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Abstract

The locations of Hopf bifurcation points associated with the viscous, incom-

pressible flow about a NACA 0012 airfoil with structural coupling are computed for

very low Reynolds numbers (< 2000). A semi-implicit, first-order-accurate time-

integration algorithm is employed to solve the streamfunction-vorticity form of the

Navier-Stokes equations. The formulation models the inclusion of simple structural

elements affixed to the airfoil and captures the resulting airfoil motion. The equations

describing the airfoil motion are integrated in time using a fourth-order Runge-Kutta

algorithm.

The dissertation is divided into two parts. In Part I, numerical experiments

are performed in the laminar regime to determine if the structural model of the

airfoil has an effect upon the location of the Hopf bifurcation point when compared

with the fixed airfoil. Results are reported for a variety of structural characteris-

tics, including variation of torsional and linear spring constants, inertial properties,

structural coupling, and structural damping. The structure of the solution space is

explored by means of phase plots.

In Part II, the Baldwin-Lomax turbulence model is implemented to model

turbulent flow. A numerical effort is made to predict the onset of unsteady flow and

the results are compared to theory and experiment. A comparison is undertaken

with the compressible and incompressible form of the Navier-Stokes equations to

assess the correspondence of the unsteady lift evolved by pitching the airfoil at a

prescribed frequency and amplitude. Comparisons are made with the lift predicted

by the potential flow method of Theodorsen.

xv



HOPF BIFURCATION IN VISCOUS, LOW SPEED FLOWS

ABOUT AN AIRFOIL WITH STRUCTURAL COUPLING

I. Introduction

1.1 Overview of Part I

In the past few years, interest in low Reynolds number, time-periodic flows

has been increasing. Pulliam [1, 2] has performed numerical studies detailing such

flows, demonstrating such phenomena as period-doubling bifurcations and chaotic

attractors. Pulliam investigated periodic flows using time integration of the Navier-

Stokes equations, and found a sequence of period-doubling bifurcations leading to

chaos. Jackson [3] has investigated the onset of vortex shedding corresponding to

time-periodic body forces for a variety of body shapes. Strganac and Mook 14]

have numerically investigated subsonic flutter for a finite wing using a potential flow

model, demonstrating the existence of a "flutter boundary," above which limit-cycle

oscillations persist. A substantial portion of Part I was reported earlier [5] as part

of an ongoing research effort.

The development of a time-periodic flow, emanating from an equilibrium flow,

is an example of Hopf bifurcation [6, 7]. Physically, Hopf bifurcation represents an

exchange of stability manifested, in the fluid dynamics context, as the formation of a

time-periodic vortex street. The physically relevant processes occuring are the con-

vection and dissipation of vorticity. If the dissipative mechanism dominates, vorticity

will be dissipated before a wake instability can be excited, and thus a steady flow

results. Conversely, if the convective forces dominate, unsteady vortex shedding en-

sues. The Reynolds number, representing the ratio of convective to dissipative forces,



is therefore physically relevant and serves as the bifurcation parameter. The proper-

ties of the solution space, as the bifurcation parameter changes, serve to classify the

bifurcation. In this study, a subcritical bifurcation is demonstrated numerically. A

subcritical bifurcation occurs when, across a given range of the bifurcation parame-

ter, three solution branches to the equation set coexist: a stable equilibrium branch,

a stable limit-cycle branch, and an unstable limit-cycle branch connecting the stable

branches [6]. This region is referred to in the literature as bistable. Physically, a sys-

tem exhibiting a subcritical bifurcation will be susceptible to perturbations. Seydel

[6] offers a more complete description of this type of bifurcation.

Beran [8] has employed time integration as a means of determining and veri-

fying the location of Hopf points for a fixed airfoil in a two-dimensional parametric

space defined by Reynolds number and angle of attack. This was accomplished in

conjunction with a direct method for computing the Hopf point [3, 9]. The current

effort represents a modification to the time-integration algorithm of Beran to allow

the numerical prediction of the Hopf bifurcation point for an airfoil with a linear

and torsional spring affixed. This represents a simple structural model and thus sug-

gests a means to examine "low Reynolds number" flutter. The central question to

be investigated is the coupling effect between the developing aerodynamic flowfield

and the structural model of the airfoil, which is now free to vibrate or oscillate in

response to the aerodynamic forces. The basic assumptions associated with the fluid

are those of an incompressible, viscous, two-dimensional flow. The fluid equations

are presented in streamfunction-vorticity form.

The structural model of the airfoil allows motion with two degrees of freedom:

pitch and vertical displacement. The equations of motion for the airfoil incorporate

linear and torsional spring constants, structural damping in both axes, and struc-

tural coupling effects. Numerical experiments are undertaken to determine the effect

on the critical Reynolds number, Re,it, when the inertial and structural properties

of the airfoil are varied. A limited grid refinement study is undertaken to evalu-

2



ate the accuracy of the computed Strouhal number and Re,it. The variation of

Strouhal number with the computational domain size is also explored. In addition,

the structure of the Hopf bifurcation is investigated, with emphasis on the impact of

the airfoil structural model. These investigations are undertaken in the laminar flow

regime in order to explore the solution structure in the absence of turbulence and

unnecessary amounts of artificial dissipation. Low-speed flutter and the associated

solution structure in the laminar regime have not been investigated for viscous flows.

1.1.1 The Influence of Turbulence The transition from laminar to turbulent

flow has a fundamental and significant effect upon the onset of unsteady motion in a

fluid. The physical progression of this transition is shown in Figure 1 for the case of

a circular cylinder [10]. At very low Reynolds numbers (Re < 5), the flow is steady

and no vortices are present. As the Reynolds number increases, the flow remains

steady, but a pair of standing vortices appear in the near wake. A further increase in

Reynolds number induces unsteady laminar flow, manifested by asymmetric vortex

shedding. It was this laminar regime that was explored for the moving airfoil in

Part I to assess the impact of structural model on the flow structure.

The transition to turbulence at larger Reynolds numbers is the hallmark of

the next regime. As the Reynolds number increases to approximately 3 x 105 , the

increased dissipation provided by turbulence disrupts the unsteady vortex street and

a quasi-steady flow ensues. As the Reynolds number increases beyond 3.5 x 106, the

flow again becomes unsteady with the reestablishment of the vortex street. The

transition to turbulent flow represents a natural demarcation between Parts I and II

of this work as applied to the prediction of flutter onset. The numerical investigations

in Part I are applied in the flow regimes indicated by the first three entries in Figure 1.

The numerical investigation of flutter onset in Part II incorporates a turbulence

model, and is applied in the flow regimes indicated by the final two entries in Figure 1.

3



Its < S REGIME OF UNSEPARATED FLOW

5 TO 15 < Re < 40 AFIXEDPAIROFFOPPL

VORTICES IN WAKE

O 40 4 Re<90 AND9 4 Re <118
TWO REGIMES IN WHICH VORTEX

SSTREET IS LAMINAR

0

150 < Re < 300 TRANSITION RANGE TO TURBU-
LENCE IN VORTEX

300 4 Re Z 3 X 105 VORTEX STREET IS FULLY
TURBULENT

3X105 Z Re < 3.5X106

LAMINAR BOUNDARY LAYER HAS UNDERGONE
TURBULENT TRANSITION AND WAKE IS
NARROWER AND DISORGANIZED

3.1 X 108 4 Re
RE-ESTABLISHMENT OF TURBU-
LENT VORTEX STREET •

Figure 1. Regimes of fluid flow across a circular cylinder [10]
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1.2 Overview of Part II

While the exploration of the solution space presented in Part I is of value

from an analytic point of view, the results do not directly correspond with ex-

periment (typically performed in the subsonic to transonic regimes [11, 12], with

Re > 5 x 105, where turbulence is a factor). The predicted onset of unsteady

motion (laminar regime) occurs at a Reynolds number much lower than the exper-

imental evidence (turbulent regime) indicates. Therefore, an attempt is made to

capture experimental data by implementing a turbulence model to account for these

effects at larger Reynolds numbers. The turbulence model selected for this effort

is that of Baldwin and Lomax [13] as modified by Knight and Visbal [14]. A brief

discussion of the implementation of the turbulence model and its applicability to

the present calculations is provided in Chapter 4. An attempt is made to capture

numerically the experimental data of Yang and Zhao [11] and the theoretical and

experimental results of Theodorsen [15].

A similar computational effort, on a larger scale, was accomplished by Gu-

ruswamy [16]. He employed the compressible Navier-Stokes equations with the

Baldwin-Lomax turbulence model in conjunction with an aeroelastic model of a wing-

body configuration and successfully simulated aeroelastic oscillations for a transonic

flow regime (M., = 0.975). Although Guruswamy achieved satisfactory results using

the Baldwin-Lomax turbulence model, and demonstrated no specific shortcomings,

he did question the accuracy of the turbulence model in predicting the onset of flow

unsteadiness due to the quasi-steady assumptions applied in its derivation. Kousen

and Bendiksen [17] and Wu et al. [18] have also applied the Navier-Stokes equa-

tions to the numerical prediction of flutter onset in the high subsonic and transonic

regimes. Similar efforts applying the Euler equations have been reported by Bendik-

sen and Kousen [19] and Robinson et al. [201. Strganac et al. [211 investigated the

numerical simulation of subsonic flutter using a vortex-lattice method. Considerable

attention has been devoted to the understanding and prediction of the onset of aero-
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dynamic flutter [12, 15, 22, 23, 24, 25, 26]. In addition to the computational efforts

cited, wind tunnel [22, 23] and flight testing [12, 24] in conjunction with theoretical

analysis [15, 25] have been the usual mode of inquiry. The advantages of a com-

putational approach include reduced cost, easier application (once a validated code

is available), and an ability to explore experimental configurations or parametric

studies.

The contribution attempted in Part II is twofold. Firstly, numerical evidence

is presented that the bifurcation to an unsteady state is subcritical in the turbulent

regime. Secondly, a basis is sought establishing the validity of the numerical predic-

tion of flutter onset. In order to substantiate the basis for numerically predicting

flutter onset, a correlation is made between the present numerical results and those

predicted by the aerodynamic transfer function of Theodorsen [15]. A NACA 0012

airfoil is oscillated with a prescribed frequency and amplitude; the computed lift

coefficient is compared with that predicted by Theodorsen's function. This is ac-

complished using a modified version of the incompressible code employed in Part I,

and a Beam and Warming code authored by Visbal [27]. This is the focus of the

second part of the present research effort. The results are presented in Chapter 5.

Tie modifications to the incompressible code are presented in Chapter 4. A

time-dependent metric transformation is applied to account for the airfoil motion

rather than the approach outlined in Part I. The reasons for the modifications and

the resultant changes to the boundary conditions are discussed. Also provided in

Chapter 4 is an outline of the development of Theodorsen's function and the of

application of the Beam and Warming algorithm.

Validation of the incompressible code employed in this work is presented in Ap-

pendix A. The implementation of the integration procedure for solving the Navier-

Stokes equations was validated by simulation of the flow about a fixed circular

cylinder. The circular cylinder was chosen because a wide range of experimental

data is available [28, 29, 30]. In contrast, there is a paucity of experimental and

6



numerical data available for airfoils over the very low Reynolds number range con-

sidered. Therefore, comparisons with experimental and other numerical data are ac-

complished for the Strouhal number and drag coefficient for the case of the circular

cylinder. Good agreement was achieved with the results of previous investigations.

The airfoil equations of motion are identical in form (second-order ordinary

differential equations) and thus only the vertical axis was examined for validation

purposes. The validation was accomplished by comparing an exact solution to the

ordinary differential equation representing the vertical axis to the numerical solution

when a prescribed forcing function is applied. A phase lag equal to the largest

timestep used in the airfoil computations was applied between the forcing functions

to examine the effect on the respective responses. The method of coupling the

aerodynamics and the structural model was demonstrated to be accurate.
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I. Analysis: Part I

2.1 Equations of Motion

The equations of motion and the method of solution are presented in this sec-

Lion. The modifications to the streamfunction-vorticity formulation of the equations

are described for the case of the rotating and translating airfoil. Finally, the imple-

mentation of the numerical algorithm is discussed, including the application of the

boundary conditions.

Equations are presented throughout in nondimensional form. The velocity scale

is the freestrearn velocity, U, the length scale is the chord length, c, time is nondi-

mensionalized by the aerodynamic scale, c/U. Force per unit mass (acceleration) is

nondimensionalized by U2/c.

In modifying the equations of motion for a two-dimensional, incompressible

flow, the -pproach of Batchelor [311 is applied, wherein the moving frame, i.e., the

frame fixed to the airfoil, hereafter referred to as the a-frame, is treated as the com-

putational reference frame. The acceleration of the a-frame relative to a true inertial

frame is rectified by inclusion of apparent body forces. These body forces (per unit

mass, nondimensionalized) are then added directly to the momentum equation in

vector form. The components of momentum must then be examined irdividually to

insure they are correctly handled when transforming to the streamfunction-vorticity

form of the equations. An alternate approach to modeling the moving airfoil, involv-

ing a time-dependent metric transformation, is presented in Part II.

The acceleration in the inertial system is given by Greenwood [32]:

d= d 42 d2  d- di

d-r + Y- + 2fi x ii+T- x r+ f0x (flx " (1)
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Figure 2. Inertial and A-Frames
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where R(t) is the position vector to the origin of the a-frame, r represents the position

vector of a fluid element in the a-frame, and fl(t) is the angular velocity of the a-

frame with respect to the fixed frame (see Figure 2). Here the term 2SI x i7 accounts

for the Coriolis effect, df/dt x F is associated with tangential (Eulerian) acceleration,

and fi x (d x F) is the centripetal acceleration, while i- = u61 + v62 represents the

velocity in the a-frame. The velocity observed in the inertial system is related to

this velocity by the relation [32]

dR + -+ f, (2)

or, in components referenced to the a-frame system,

=- fil + U 2. (3)

The velocity field observed in the inertial frame expressed in components referenced

to that frame is given by

V = (ficosa + isina)z + (-fisina + i cos a)j, (4)

where a = a(t) and 6 = -0.

The acceleration in the a-frame may be equated to the local force per unit

mass acting on a fluid element to give the momentum equation. In terms of 6(r-, t),

assuming an Eulerian formulation [31],

2-dfD6T +9"i V! d -r. (5)

The applied forces can be separated into the pr-. -P forces, the viscous forces,

and the apparent body forces. If the body forces mt, 'ý -ýoted by f= fA61 + f262,

10



then the components of the momentum equation [31] may be written

au + + vu C a- + 1 (a 2 + a 2 _ f,, (6)

,9v '9V CIV ap 1 1a a2 V ) _ f2-++ I -+ - IU +v. (7)
ON ~ ax , ay R 9X

2  
ay

2 ,

where Re = Uc/u. Differentiating the first expression with respect to y and the

second with respect to z and subtracting eliminates the pressure term. Using the

definition of vorticity, w = v, - u,, we have,

aw Ow 8& 1 (02w a 9 af, af2
+ U- + v - =W-k. -+- j+ - (8)

This represents the modified form of the vorticity-transport equation; the definition

of streamfunction and the continuity equation remain unaltered. The expressions

for fi and f 2 are obtained by examining the component form of Eq. (1):

f, = Ri-2vi-Y _-xf 2 , (9)

f2 = R 2 + 2uZ + xl - yfl 2 , (10)

where R = R1, 1 + R262 , and r:= Xil + Y62.

The streamfunction, T, is defined by the relations

S= u . 1 , (11)

-% = v=U.e 2. (12)

A disturbance streamfunction is also defined [9] such that

,(X y) = IP(Xy) - i, (13)

= ycosa-zsina, (14)

11



S./Mo

Figure 3. Airfoil with Linear and Torsional Springs Affixed

establishing

u = cosa+?•, (15)

v = sina-•'•. (16)

Ancillary to the vorticity-transport equation is the Poisson equation for q [8]

-x+ O = -W0. (17)

The airfoil with the linear and torsional springs affixed is shown in Figure 3.

The governing equations for the airfoil with two degrees of freedom, expressed in

dimensional form, are

m'h + Sa& + DhA + Khh = Qh, (18)

Saý + l,& + D,& + Kg(a - ao) = Qa. (19)

12



where h is the vertical displacement, mo is the airfoil mass per unit span, S,, is the

mass static moment, I, is the mass moment of inertia, Kh and K, are the spring

stiffness coefficients, and Dh and D, are the structural damping coefficients. Q1

is the net applied aerodynamic force in the vertical direction, while Q", is the net

applied aerodynamic pitching moment.

The transformation of the airfoil equations of motion to a first-order, coupled

system proceeds via the straightforward substitutions, yj = h, Y2 = h, Y3 = a, and

y4 = 6, leading to

3il = 3/2, (20)

3t2 = (Qh - -J4 - Dhy2 - Khyl)/Mr, (21)

i13 = Y4, (22)

314 = (Q. - s,2 - Dry4 - gK((y3 -o))/VI. (23)

The equations, in this form, are then integrated in time using a fourth-order

Runge-Kutta algorithm [33]. The integration takes place immediately after the cal-

culation of the aerodynamic coefficients in the main algorithm and proceeds from

time t to t + At. The linear and angular accelerations obtained are then returned to

provide updated values for the aerodynamic calculations.

2.2 Coordinate Transformation

The equations of motion as presented are applicable to a Cartesian coordinate

system. To transform the equations so that they apply to a general curvilinear

coordinate system, the chain rule of differentiation is employed. The transformation

is from the physical domain (x, y) to the computational domain (•, q), where

- (z,y), r = 1(x,y). (24)
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The direct application of the chain rule then produces the derivative operators

= + 8, (25)

S=G + n (26)

Here, the subscripts denote differentiation with respect to time or spatial coordinate.

The Jacobian of the inverse transformation is assumed to be non-vanishing [34]:

(27)

The coordinate transformation results in the following form for the Laplace operator

[8]:
j2V2¢ = 02Ot + 010n, - 2030(, + 040t + 050,1 = _j2 . (28)

where the transformation coefficients are functions of the metrics and their deriva-

tives,

01 = = +

2 202 = X" + y,7,

03 = X(XI7 + M•n,

04= j-1[OIY1(7X, -X7,Y,) + 4'2(Y(CX, - XftY,,) + 203(xfy,, - yx7]

05= -J'[O 1 (Y,1 ,,IXf - X,?,,Y() + qS2(YfCXt - x((yo + 203(x(,yt - (xc]

The transformed Laplacian is applied to the Poisson equation for the stream-

function and to the vorticity transport equation, where the latter equation takes the

following form:

Wt+ fi~W(+ 6W, =V2w+f1 2 , (29)
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with
S= ,, 1-9

i = 4f]A + On1f),, = Uf + 00=f,.

2.3 Aerodynamic Coefficients

The streamfunction-vorticity formulation of the governing equations eliminates

pressure as a flow variable. Therefore, an alternate means of calculating pressure is

required to obtain the aerodynamic coefficients. The procedure employed is similar

to that utilized by Mehta [351. The pressure is integrated along a path normal to

the airfoil surface to establish the pressure at the leading edge; the integration then

proceeds along the airfoil upper and lower surfaces to establish the pressure at these

locations. It should be noted that the pressure at the leading edge is not required for

the calculation of lift, drag, or moment. However, in other applications the surface

pressure distribution was required, so the present technique is maintained. The basic

approach is to manipulate the components of the momentum equation to yield pc and

p,,. The components of the momentum equation require modification to account for

the non-inertial character of the airfoil-fixed coordinate frame. The transformation

proceeds from Eqs. (6) and (7), and results in

Ut + ('@',Uf - *017) + (Ylpk - Y(P,)= V2U - f,, (30)
J J Re

vt + ('P,v -Te'v,) + -(zP - x,-p1)P I V2v - f,, (31)
J J Re

where the Laplacian operator now refers to the transformed domain as in Eq. (28).

Using the identities

1

x(V 2u + Y(V2V = (-,O4,w + 0•(3 w), (32)

SV 2 U + YV 2 V= _-(-03w7 + 024), (33)
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Eqs. (30) and (31) are manipulated to produce

PC 1 (0W 4'iWO + 'II(-X(U, + YCV,7) - *1,7(XfU4 + (f

-- fl -- Yff2 - X(ut - yf Vt, (34)

=' [1 j(v2wt 034W,1) + ~'@C(XrU, + lb,7v,) - '@,7z,,UC + j0

-- znfl - Ynf2 - X,,ut - yVt. (35)

On the airfoil surface, Eq. (34) simplifies to

1

P( -= 1 -- (OWt - OIw,,) - zXf 1 - Yef2. (36)

The pressure is first calculated at a node on the far-field boundary using Bernoulli's

equation,
PO ( 2 _ ). (37)

This is followed by itegration along a line of constant 4 to obtain the pressure at the

leading edge of the airfoil,

Pie = pJ d7 + Poo. (38)

The pressure along the upper and lower surfaces is then computed by integration of

Eq. (36),

P( =b) PA + p(G). (39)

The aerodynamic coefficients may then be determined. The chord and normal

forces are calculated first, from which the lift and drag coefficients are obtained

= 2jpdy _ 2 jwdx, (40)

C. = -2f1Pdx 2j wdy. (41)
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The lift and drag coefficients are obtained by transforming C, and C, to the wind

reference framnt

C -= C,, cos a - C, sin a, (42)

Cd = C, cos a + C,, sin a. (43)

Finally, the pitching moment about the center of gravity is determined via

Cm, = Jf A x ftfidA. (44)

where FA is the vector from the center of gravity to the differential area, dA, fi is

a unit outward normal to dA , and ft is the total force (per unit area) acting on

element dA..

2.4 Boundary Conditions

The boundary conditions on the surface of the airfoil are given by Beran and

Lutton [9], where T is specified to vanish

IF = 0& + ý = 0, (airfoil surface). (45)

The no-penetration condition (45) and the no-slip condition require that 1P., and *V

vanish on the surface, which is equivalent to the specification

T', = 0, (airfoil surface). (46)

This specification is used to develop an implicit condition for surface vorticity from

the evaluation of the streamfunction at the surface [9]

Olt,' + Wj2 = O. (47)

17



The specification of the conditions on the outer computational boundary is

complicated by the fact that they are dependent upon fl(t). The absolute velocity

in the far-field is V,,. = cos ail + sin ai2 expressed in the a-frame coordinate system.

From the previous analysis

dRTj + UMo + fX F', (48)

so the relative velocity at the outer boundary is then

dR

- u06 1 + voe2. (49)

Examining the components of the previous equation establishes the expression for

the velocity components on the outer computational boundary

U" = (cos a - iR + y1n)il + (sin a -/i2 - Xf?)6 2. (50)

The expressions for the vorticity and streamfunction on the outer boundary

are then obtained by differentiation and integration, respectively,

Wo = -20, (51)

*oo = (cosa -JR)y-(sina -/ 2 )x+ IfZ(x2 + y 2 ). (52)
2

The disturbance streamfunction on the outer computational domain is then

00 = T" - j = --A1 Y + R2x + 2n(X2 + Y2). (53)
2
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2.5 Numerical Implementation

The computational coordinates, ý and Y7, are discretized and referenced by the

indices i and j, respectively:

1<i<I, I <<_ <J.

Spatial derivatives in the Laplacian are discretized using second-order accurate,

central-difference expressions. The convective terms in the vorticity-transport equa-

tion are treated with a hybrid approach [8]. The convective term 6w,, is approximated

using central differences, while a second-order accurate, upwind difference is applied

to the other convective term, £wc. This approach improves the smoothness of the

vorticity field in the absence of explicit artificial viscosity.

The aerodynamic equations of motion, (Eqs. (28) and (29)), are integrated

in time using a semi-implicit procedure applying LU decomposition, as developed

by Beran [8]. The Poisson equation and the viscous terms in the vorticity-transport

equation are treated implicitly. The convective terms in the vorticity-transport equa-

tion are treated explicitly via a first-order accurate Euler scheme.

The time-integration procedure is written in delta form, with the correction

vectors, AWi and A'w defined by

=k+ on + (on'1 - on") on + Ano~,

where n is the temporal index such that t = nAt.

The Poisson equation relating streamfunction and vorticity (Eq. 28), at points

away from the airfoil surface, may be recast using operator notation as

Llkn+l + ,n+1 = 0,
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LA'O + Aw- -(LO' + w') _ N1. (54)

Decomposing the Laplace operator into two linear operators, L1 acting on the interior

nodes, and L2 acting on the nodes adjacent to the airfoil surface, yields

L1 Anob + L 2Anob + Anw, = NI, (55)

where the subscripts i and s refer to interior and surface nodes, respectively. At the

nodes on the airfoil surface, TI vanishes, leading to the discrete form of the boundary

condition

8on+1 + P = o,

A•b, = -(Obn + ) N 2. (56)

Likewise, the discrete boundary condition for vorticity on the airfoil surface may be

expressed as

L 301!+' + +'1 = 0,

L3Ank, + Anw. = -(L 3_ ' +nw,) N3. (57)

The vorticity-transport equation, evaluated at nodes away from the surface, is writ-

ten in discrete form as

At •

A'n_ -- L•÷ = -(iW + Ow,,)nAt + (fi - f2 )At,
Re'

or when reexpressed in delta form

A. _- LAn = -(OWt + O,, 1)nAt + ALw' + (j1 - 2)At N , .

The operator 6 is defined such that

2O - AtL] n

20



j,A'j, + .GAw. = N4. (58)

Provided that At is held constant, di and G, 0.re constant matrices. The resulting

blocked system of equations, (55-57). can be reduced to a single, banded system for

AAA= N4 + G,(L 2N2 - NI) - 6N,(59)

where

A =-(GiL1 + G.L 3 ).

The matrix A is time-invariant (for a constant time step and Reynolds number), and

is therefore decomposed into the product of lower and upper triangular matrices at

the start of the time-integration procedure. Once A"0i and 0"+1 are calculated, the

vorticity can be updated by applying Eqs. (55) and (57):

A =wi = N1 - L1 A"Oi - L2 N 2, (60)

A'w. = N 3 - L 3A'tki. (61)

The far-field boundary conditions, implemented in delta form, are

= -2A"•, (62)

A•b00 + A~wQ0 = -A",y + An 2 X + 2AnA(z2 + y2 - 4). (63)
2

Finally, the velocities and aerodynamic coefficients are calculatcd, "C, d the integra-

tion of the airfoil equations of motion accomplished. The aerodynamic coefficients

are calculated immediately after the resolution of ?k and w and are treated as con-

stants over the interval t to t + At. The integration of the airfoil equations of

motion (18,19) proceeds over the same interval by subdividing this interval to apply

the Runge-Kutta integration, using the constant values for the applied aerodynamic

loads. The resulting linear and angular accelerations are then returned to provide up-
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Figure 4. Flowchart Detailing Implementation of Aerodynamic and Structural
Models

dated values for the aerodynamic calculations at the beginning of the next timestep.

This introduces a phase lag of up to At in the application of the loads, however this

is consistent with the first-order accuracy in time of the overall scheme. The imple-

mentation of the structural model is detailed in Figure 4. This procedure has been

established as robust by comparing airfoil response to a prescribed forcing function.

The validation procedure is documented in Appendix A.
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III. Results and Conclusions: Part I

3.1 Grid Refinement and Sensitivity

Numerical experiments were conducted with a NACA 0012 airfoil using a vari-

ety of C-grids. All grids were constructed with a hyperbolic grid generation algorithm

developed by Barth and Kinsey [36]. The grid generation algorithm proceeds from

a point distribution specified on the airfoil surface. Hyperbolic partial differential

equations are employed to establish the normal point distribution, providing a nearly

orthogonal mesh. Grids 1 and 2 are shown in Figures 5 and 6. Table 1 provides the

numerical characteristics of the grids, displaying the grid dimensions, the number of

nodes on the upper surface (N.), lower surface (NI), and wake (Nm,), the tangential

node spacing at the leading edge (Asie), and trailing edge (Aste), and node spacing

normal to the surface (As,,). Also provided in Table 1 is the distance to the outer

boundary (Rd), in chord lengths. Because of computational constraints, the majority

of numerical investigations were performed using Grid 1; selected data points were

reexamined using other grids.

To assess the impact of grid refinement, the Strouhal number and the critical

Reynolds number. Ree,.it, defined as the Reynolds number at which the flow becomes

unsteady, were determined for the fixed airfoil case. The Strouhal number was

determined by measuring the period of the oscillations in C1 at Re = 1200 for each

grid. Re~it was determined by starting from an equilibrium solution, and integrating

C-Grid Ix J IN. NI IiNi I Ase I Ast,. I A n, I
1 59x25 20 19 10 .0100 .0200 .0010 2
2 99x40 26 25 24 .0050 .0020 .0010 5
3 139x50 35 34 35 .0040 .0015 .0010 6
4 179x60 40 39 50 .0030 .0010 .0010 7

Table 1. Grid Characteristics
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C-Gridl I x J [ St IRe_,

1 59x25 0.93 550
2 99x40 0.95 760
3 139x50 0.98 810
4 179x60 0.99 850

Table 2. Strouhal no. at Re = 1200 and Hopf points, a = 0.2 rad

in time to assess the stability of the initial solution, as in Beran and Lutton [9]. The

results are displayed in Table 2. The Strouhal number shows a clear convergence,

varying by slightly more than one percent between grids 3 and 4. The Re~,j data

show a similar convergence, varying by less than five percent between grids 3 and

4. This increased variation is expected, as the determination of Reait is less precise

than the Strouhal number determination.

In addition, the effect of varying the placement of the outer boundary, Rd,

was explored. This was accomplished by constructing a series of grids, each with

parameters identical to those of Grid 2, except for the variation of Rd. The Strouhal

number is determined in each case, again at Re = 1200. The results are displayed

in Figure 7. The Strouhal number shows very little variation for Rd > 4. It should

be noted that grid parameters play an important role in this type of investigation.

For instance, if the trailing edge spacing, Aste, is increased to .005 for Grid 2, the

Strouhal number decreases to 0.41, clearly inconsistent with the stated results. This

is attributed to the failure to resolve flow structure, namely vortices, in the vicinity

of the trailing edge. At increased domain sizes (Rd > 10) a slight decrease in the

Strouhal number is noted, apparently due to an insufficient number of wake points.

Considering these effects, it is a necessity to perform at least a limited grid refinement

study when addressing similar topics.
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3.2 Variattun of Natural Frequencies: Single and Dual Axes

The procedure employed to determine the approximate location of Hopf points

is explained here. Steady solutions were obtained, using time integration, at very

low Reynolds numbers (Re < 100). Continuation in Reynolds number was then

employed, i.e., the Reynolds number was gradually increased in increments between

10 and 100, depending on the rate of convergence of the previous solution, until an

oscillatory solution was obtained. The instantaneous change in Reynolds number

introduces perturbations into the numerical flowfield, which are then either numer-

ically damped, or evolve to an unsteady flow. The value of Reynolds number at

which the flow becomes unsteady is denoted as Reit, representing the approximate

location of the Hopf point. This procedure is not exact; the main interest being the

shift in the Reynolds number between the fixed and moving airfoils. The principal

difficulty in this type of investigation is the amount of computational time required

to accurately determine the Hopf point. As the structural and inertial properties of

the airfoil are varied, the described procedure must be reapplied. However, as the

Hopf point is approached, the aerodynamic damping becomes less effective, and a

large number of time steps are required to assess the stability of the computation.

Numerical investigations were performed for a, = 0.1 rad and a,, = 0.2 rad,

where a. is the value of a at which the torsional spring delivers no moment (cf. Eq.

(19)). For each of these, a variety of cases were considered. The natural frequency

in pitch, w, = VK--1l, was varied from 5 to 50; similarly, the variation of the

natural frequency in plunge, Wh = rKh/mo, was varied across the same range.

These investigations are undertaken with both axes active (dual axes), and with the

complimentary axis disabled (single axis), to assess the influence of the the individual

axes, and the axes in tandem, on the location of the Hopf point. In the dual axes

case, wa was varied, while wh was held constant. The structural coupling term, So,

was initially set to zero.
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Figure 5. Grid 1 (59x25)

The results for the a. = 0.2 case are shown in Figure 8. The onset of peri-

odic motion for the fixed airfoil, determined by the procedure outlined above, was

determined to occur at approximately Re = 475. This is reasonably close to the

value predicted by a direct method for calculation of the Hopf point, which yields

Re = 550 for the fixed airfoil [9]. The direct method involves solving an extended

set of equations, augmented to capture the eigenvalue migration as the Reynolds

number changes (cf. Appendix C). In the direct method, the Reynolds number

represents an unknown, and the solution delivers the Reynolds number for which a

pair of complex conjugate eigenvalues are migrating across the imaginary axis (cf.

Appendix C). This represents a mathematical description of Hopf bifurcation. Two

methods are therefore available to determine the Hopf bifurcation point: the direct

method and time integration. See Beran and Lutton [9] and Jackson [3] for a detailed

presentation of the direct method. The difference in the two methods suggests that
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Figure 6. Grid 2 (99x40)

the structure of the Hopf bifurcation is subcritical, a question explored further in

Sections 3.3 and 3.4. With both axes active, there was a significant reduction in the

Reynolds number at which the flow became periodic, to approximately Re = 300,

across a broad range of w,. The exception occurs for values of WC below 10. This ef-

fect is attributed to the smaller value of K& employed. The lower value of K& allows

the airfoil to equilibrate to a new, lower angle of attack, for which a larger value of

the critical Reynolds number is expected. This is consistent with earlier results [9].

The single-axis experiments are also displayed in Figure 8. The most notable result

is that, with the pitch axis fixed, the effect of the vertical axis on the Hopf point

location is negligible across the range of wh, except at wj, = 5, where a reduction

to Re = 350 is noted. This result is due to resonance, since the angular frequency

of the aerodynamics, determined by examining the fixed airfoil at Re = 500 and

a = 0.2 rad, is 5.06 rad/sec. It should be noted that the angle of attack was fixed
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Figure 7. Variation of Strouhal no. with Domain Size

in this case (at a = 0.2), unlike the previous case, where a was not fixed. The

results of a second, single-axis experiment are also shown in Figure 8. Here, the

vertical axis was fixed, and the pitch axis was active. A reduction in the critical

Reynolds number was again noted, with the same trend observed for Wh less than

10. The differences in the critical Reynolds number noted in the dual and single-axis

experiments indicate that the axes become coupled via the aerodynamics even in the

absence of direct structural coupling. The aerodynamic coupling occurs, and has an

effect on the onset of periodic motion, despite the fact that the vertical axis, alone,

has a minimal impact for Wh > 10.

The same set of numerical experiments was then repeated at a, = 0.1 rad to

determine if the same trends are evident at a lower angle of attack. See Figure 9. The

critical Reynolds number for the fixed airfoil occurs at Re = 1600 when applying Re

continuation, while the direct solver yields Re = 2320. The increased difference be-

tween these two numbers, when compared with the a = 0.2 case, again indicates the

subcritical nature of the bifurcation, and that the bistable region grows as the angle

of attack decreases. This may explain the results observed for the vertical axis case:

no effect upon the location of the critical Reynolds number for wh = 50, however, at

lower values of Wh, the value of the critical Reynolds number is actually increased.

The differences in the critical Reynolds number observed between the fixed airfoil
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Figure 8. Critical Reynolds no. vs w, a = 0.2 rad

and vertical-axis case indicate that the effect of the structural model is the migra-

tion of the stable and unstable periodic orbits associated with the bistable region.

That is, the location of the periodic orbits (both stable and unstable branches) in

the bistable region are more sensitive to the addition of a structural model than

is the actual location of the Hopf point. This may occur because these orbits are

inherently periodic, and hence immediately have the potential to excite the airfoil.

See Figure 15 for an indication of this effect. Since analysis reveals the vertical axis,

singularly, should have no direct influence upon the location of the Hopf bifurcation

point, the numerical results presented are attributed to the migration of periodic

orbits in the bistable region.

The dual-axis experiments show the same trend (reduction in the critical
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Figure 9. Critical Reynolds no. vs w, a = 0.1 rad

Reynolds number) as the ao = 0.2 case, except that the reduction is of greater

magnitude. It is observed that the initial onset of oscillations begins at the same

Reynolds number, Re = 300, for both the a = 0.1 and a = 0.2 cases with W" > 10.

The same trend at lower values of w,, is evident as the airfoil equilibrates to a lower

angle of attack. The differences in the value of critical Reynolds number between

the dual-axis results and the pitch-axis results are again apparent, but are also of

greater magnitude than in the ao = 0.2 rad case.

The effect of structural coupling, S,, was also examined. The value for the

previously discussed data was S, = 0.0. The value of S, was increased to 0.1, and

again to 0.2. With both axes active, w,, = 50 and wh = 10, there was no significant

change in the critical Reynolds number for either value of So. Since the single-axis
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and dual-axis experiments demonstrated the influence of coupling, it is probable that

the axes are strongly coupled aerodynamically, regardless of the presence of direct

structural coupling.

3.3 Influence of Structural Damping

The influence of structural damping, D. and Dh, was expiored next. Since the

onset of oscillatory flow is closely related to the ratio of the convective and dissipative

phenomena inherent in the flow via the Reynolds number, it is of interest to deter-

mine the effect on the onset of oscillations if an additional dissipative mechanism is

applied. The results are shown in Figures 10, 11 and 12. These figures present the

aerodynamic response, as indicated by C1, and the structural response of the airfoil,

indicated by a and h, as the levels of structural dissipation are varied. A Fourier

analysis [37] is also presented to quantify the frequency content of the aerodynamic

response. The frequency is presented as Hertz (Hz), here measured as cycles per

aerodynamic time unit. The amplitude is scaled such that a constant signal will

provide an amplitude equal to its value, while a single-frequency, harmonic signal

will provide an amplitude equal to half of its peak-to-peak amplitude.

The results indicate that the effect of increased levels of structural dissipation

are dependent upon the Reynolds number. The damping factor, C, is defined such

that C = DIDcit, where Dcit represents the critical damping level, here equal to

2\V/7TA- for the vertical axis or 2V/T7/• for the pitch axis. All numerical experi-

ments were performed with the damping factor equal for both axes, hence a single

value of C is given for each result rather than stating a value for each axis. Fig-

ure 10 displays the results at A- = 450, C = 0.5, representing an underdamped case.

The unsteady flow results in oscillatory airfoil motion. As the damping levels are

increased to C = 2.0 for the same Reynolds number (Figure 11), the airfoil motion

is damped and eventually a steady state is achieved. The behavior is different at

Re = 650, however. When the damping levels were increased to ¢ = 2.0, the flow
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field and the airfoil remain oscillatory, as shown in Figure 12. The difference in these

two cases appears to be related to the Hopf bifurcation structure. In the first case,

Re = 450, the Reynolds number is located in the bistable region (See Figure 15),

and the added dissipation has the effect of changing branches from the (stable) limit

cycle solution to the (stable) equilibrium solution. Conversely, Re = 650 is beyond

the bistable region and the added dissipation cannot damp the airfoil motion, as the

equilibrium solution in this case is unstable. Further numerical experiments were

performed with C ranging up to 50. Even at these high levels, the results remained

the same: at Re = 450 an equilibrium solution was obtained, while at Re = 650

oscillations persisted in C1, a, and h.

Once the Reynolds number has increased past the upper bound of the bistable

region, the additional dissipation is seen to reduce the amplitude of the airfoil os-

cillations, but does not eliminate them, even at very high damping levels (C = 50).

This result is explained by the nature of the additional dissipation applied. That is,

viscosity in the flowfield has an impact whenever velocity gradients develop in the

flow, principally in the boundary layer and the wake. In contrast, the structural dis-

sipation is only effective when the airfoil is moving, and is proportional to & and hL

Therefore, the impact of the structural dissipation only becomes apparent after the

airfoil begins to oscillate in either pitch or vertical displacement. In this Reynolds

number range (650), the lift coefficient, for example, will remain oscillatory for any

level of damping (i.e. the fixed airfoil exhibits oscillatory lift).

3.4 Impact of the Structural Model on the Solution Space

In this section, comparisons are made between the solution spaces for the cases

of the fixed and the moving airfoils. The general term "solution space" is employed

because it refers to a variety of results: vorticity in the near wake, bifurcation struc-

ture, and C, phase plots. In general, the addition of structural elements to the airfoil

tends to produce a more dynamically varying result: additional frequency content,
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migration of bifurcation points, and an inherently different behavior.

The impact of the structural model on the flowfield is shown in Figures 13

and 14. Both solutions were obtained by integrating from the same initial state at

a = 0.2 rad using Grid 2. In the case of the fixed airfoil, a steady flow ensues.

A small, stationary vortex is seen at the trailing edge. The dissipative, convective

and generative forces are in balance: the vorticity generated in the boundary layer is

being convected to the stationary vortex at the same rate vorticity is being dissipated

from the same structure. In contrast, Figure 14 displays the vorticity when the airfoil

is permitted to move. The aerodynamic response is heightened, and vortex shedding

occurs. The airfoil is pitching nose down at an instantaneous rate of 0.1 rad/sec,

a large region of (negative) vorticity generated in the boundary layer on the upper

surface has convected into the lower wake. Behind this vortex, also in the lower wake,

is a second region of (positive) vorticity initially generated in the boundary layer on

the lower surface. The differences in the vorticity patterns clearly demonstrate that

the movement of the airfoil induces the development of unsteady flow before that

which would occur for the fixed airfoil.

As discussed earlier, the structure of the Hopf point, when examined using

the procedure outlined, appears subcritical. The perturbations introduced into the

flowfield, when continuation in Reynolds number is applied, appear to initiate the

appearance of undamped, limit-cycle oscillations at a lower Reynolds number than

would otherwise be the case. In contrast, if the steady-state solver of Beran [8] is

applied, and an equilibrium solution is used as the initial state, then the onset of

periodic flow is delayed with respect to Reynolds number. Figure 15 illustrates the

structure of the subcritical bifurcation. The results were obtained using Grid 1 at

a = 0.2 rad. The solid line represents stable equilibrium solutions, obtained using

the equilibrium solver of Beran [8]. The equilibrium solutions become unstable at

the Hopf point (Re = 550), as determined by the direct Hopf solver, and the solid

line is replaced by the dashed line. An eigenvalue analysis at Re = 550 further
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demonstrates a conjugate pair of eigenvalues migrating across the imaginary axis

[9]. In contrast, no Hopf point is exhibited along the path of equilibrium solutions

where the upper and lower branches of the periodic orbits appear to converge. The

outer branches of Figure 15 represent the C1 extrema of the limit-cycle oscillations

for the fixed airfoil, the vertical axis, and dual axes respectively. The solutions along

these branches are obtained by continuation from a previous, oscillatory solution.

The results for the fi::ed airfoil and the vertical axis show a small difference, while

the branch associated with the dual-axes case shows a considerable shift, clearly

indicating the impact of the structural model on the location of the stable, periodic

orbits. It should be noted that, given the subcritical structure of the bifurcation, it

becomes problematic to determine if the structural model has an effect on the Hopf

point, or whether the principal effect is the migration of the path of periodic orbits

associated with the bistable region. In a practical setting, the question may not be

of paramount importance, since some level of perturbation is likely in any event:

the examination of the periodic orbits in the bistable region would then be of more

practical importance.

In order to examine the dynamics of the numerical solutions and to capture

the approach to attractors in the solution space (i.e., equilibrium or fixed points and

limit cycles), phase plots are introduced. In a C1 phase plot, for instance, C1(t) is

plotted against C1(t + 6t), where tt is chosen to be on the order of one-tenth of the

period. Thus for these representations, an equilibrium solution is represented by a

single point, while a limit cycle represents a single, closed orbit. The shape of the

orbit is dependent upon the value chosen for bt. Figure 16a shows the evolution

towards a limit cycle for the fixed airfoil, with time integration proceeding from an

equilibrium solution at Re = 1200, a = 0.2 rad, using Grid 2 (Rd = 14). The phase

plot displays a trajectory emanating from the center (equilibrium state), which then

overshoots the stable orbit before contracting back to a fixed amplitude. Figure 16b

indicates the corresponding time history. Contrast this solution with the case of
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the airfoil with the vertical axis active (wh = 6 rad/s), displayed in Figure 17. Time

integration proceeds from the same equilibrium solution. In this case, the progression

to a set of bounding orbits is less regular, and the solution never cleanly approaches

an orbit of constant amplitude. This is also indicated in the time history, wl-cre

additional frequency content and reduced amplitude is evident when compared to

the prior case, as indicated in the Fourier analysis of C1.

It is ot interest to consider the difference in the behavior of the two cases in

the neighborhood of the equilibrium solution, i.e., to examine the behavior of the

small perturbations which ultimately bifurcate the solution to another branch, as in

Figure 15. The phase plot of this regime, representing trajectories in the immediate

vicinity of the equilibrium solution, is shown in Figure 18 for the fixed airfoil. The

choppy character of the plot is due to the finite decimal representation of C1, but

the general trend remains obvious. The trajectories appear to construct an inner

structure, as C, is slightly perturbed about the equilibrium state. However, after

leaving this inner region, the trajectory no longer intersects itself (until much later as

it approaches a limiting orbit), and proceeds to spiral outward in a regular fashion.

Contrast this with the result for the case with the vertical axis active, shown in

Figure 19. In this case, the trajectory also spirals outward from the neighborhood

of the equilibrium solution. However, the trajectory appears to double back and

intersect itself repeatedly, indicating the additional frequency content of the solution.

While it may appear macroscopically that the difference between the two cases are

initially negligible, with differences appearing only over extended time intervals,

these results indicate the nature of the bifurcations are fundamentally different and

that the small perturbations about an equilibrium solution behave differently.

The next plot (Figure 20) was extracted from the same data set used to con-

struct Figure 15 (Grid 1, dual axes, w. = 25 rad/s, Wh = 6 rad/s). It is essentially a

cross section of Figure 15 and is intended to exhibit the evolution towards a stable

limit-cycle solution in the bistable region (Re = 380). Time integration proceeds
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from the center outward in the phase plot (a); the corresponding time history being

shown in (b). The interesting point is the apparent influence of the unstable limit-

cycle branch which connects the stable limit-cycle branch to the Hopf point. A limit

cycle of lesser amplitude than the final, stable limit cycle appears to be approached

during the time integration. However, since such a solution must be unstable, the

evolution continues to the larger amplitude limit cycle. It is noteworthy that this

phenomenon appears uniquely in the bistable region, and was not observed outside of

this region, see for example Figure 16. Behavior of this type has also been observed

in flutter experiments, see Yang and Zhao [11.

The final plot in this series, shown in Figure 21, is provided to indicate the

range of dynamic behavior. The plot represents a case with both axes active, at

Re = 950, and c- = 0.2, with w`,, = Wh = 25 rad/s, utilizing Grid 2. The phase

plot indicates the complex, multiple frequency solutions available to the augmented

dynamic system. The multiple frequencies are also apparent in the time history and

in the corresponding Fourier analysis.

3.5 Conclusions

The influence of the structural model of the airfoil on the location of the Hopf

bifurcation structure has been demonstrated. In general, the structural model allows

the development of sustained, limit-cycle oscillations in the flowfield to develop at

a lower Reynolds number than would be the case for a fixed airfoil. This effect is

most evident when the structural model incorporates multiple degrees of freedom.

Coupling between the axes can occur through either direct structural coupling, or

indirectly via the aerodynamics. Single-axis experiments demonstrate that the ver-

tical axis has a minimal impact on the value of Reynolds number at which the flow

becomes oscillatory in the absense of a resonance effect, while the pitch axis has a

more pronounced effect. The effect of structural damping is most pronounced in the

bistable region, beyond this region, the structural damping impacts the airfoil motion
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more strongly than the aerodymanic flowfield, which will remain unsteady regardless

of the structural damping level. The structure of the bifurcation is subcritical, as

the existence of perturbations in the flowfield can initiate sustained oscillations at

a Reynolds number lower than would occur when starting from an initial equilib-

rium state. The influence of the structural model may be more pronounced on the

branch of periodic solutions in the bie*able region than on the Hopf point itself. In

addition, the structural model is seen to provoke additional frequency content in the

time history of C1, for instance. The addition of structural elements may induce

secondary bifurcations which perturb the solution path from a single, closed orbit in

phase space to a more complicated orbit. This is true in the long-term time behavior

and in the immediate evolution away from an equilibrium solution.

Grid sensitivities to critical parameters such as the Strouhal number and crit-

ical Reynolds number are considerable. Relatively minor changes in grid spacing

or domain size may have a sizeable effect on numerical results. At a minimum, a

limited grid refinement study is therefore required to establish consistent results.
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IV. Analysis: Part II

4.1 Turbulence Model Implementation

One of the most difficult and challenging problems in modern computational

fluid dynamics is the correct modeling of turbulent flow. According to Bushnell

[38] the importance of turbulence modeling is so paramount that it represents a

primary pacing technology in the development of CFD. This is particularly true for

complex geometries or flowfields: separated and recirculating flows, dynamic flows,

and surfaces with curvature or corners [14].

The turbulence model employed here is a modified version of the algebraic,

eddy-viscosity model of Baldwin and Lomax [13] as modified by Knight and Visbal

[14]. The primary reason for selecting the Baldwin-Lomax model is the relatively

low computational cost and ease of application. In this regard the application is

utilized as a tool to capture the relevant physics without resolving the critical is-

sues mentioned above. It is assumed that the Baldwin-Lomax model will perform

adequately in the applied regime. There is some justification for this assumption,

as the pertinent issue is the determination of the onset of unsteady motion. No

statement is made about the relevance of the turbulence model after a dynamic flow

has evolved. That is, the turbulence model does not necessarily have to accurately

model the large-scale, unsteady flow structures mentioned above.

The turbulence model is applied in three separate regions: the boundary layer

on the airfoil, the wake proximal to the airfoil trailing edge, and the far-field wake

(see Figure 22). The boundary layer of the airfoil is divided into inner and outer

regions. In the inner region, the eddy viscosity, ci, is given by the Prandtl-Van Driest

formula [13]

ei = p(KYD)2 JIw, (64)
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where w is the vorticity, Y represents the normal distance from the airfoil surface,

K = 0.40 is the von Karman constant, and the Van Driest damping factor is given

by

D =1-exp [- (\ P. 2 (65)

The subscript s denotes conditions at the surface (wall).

In the outer region of the boundary layer, the eddy viscosity is defined by

C. = pKdCcY,,,xFmzFk, (66)

where F,. = max(YIwlD) , and YK. is the value of Y corresponding to Fma. The

function Fm,. is maximized over the Y values at a particular station. Values for the

constants are taken to be those for an equilibrium incompressible boundary layer

[14], for which Cp = 1.2, Ck = 0.65. The intermitancy factor, Fk, is given by

Fk =[ + 5.5(CkY/Y,.as)6-, (67)

and the Clauser constant, Kj = 0.0168.

The turbulence model switches from the inner to outer formulation at the first

value of Y for which ei Ž c,. Transition from laminar to turbulent flow is specified

by user input.

The turbulence model in the far-wake is modeled by defining the turbulent

eddy viscosity there as [39]

Ymc•,.AU 2

EWk = PC•,k Fa.'A Fk, (68)
Fm.ax

where

C~k = 0.058,
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F.GX = max(YI&I),

AU= (U+V)1/2 +v2)1/ 2

In the wake, Y,,,,, is measured from the wake centerline as determined by the

location of minimum velocity. The intermitancy factor, Fk, is again obtained from

Eq. (67). The value of the constant Cwk was chosen to match the theoretical value

for an incompressible turbulent wake [40].

In the near-wake, the turbulent eddy viscosity is determined by algebraically

smoothing the eddy viscosity profile at the trailing edge to the far-wake profile [39].

The distance to the far wake application was chosen to be of order 10b, where b is

the average boundary layer thickness at the trailing edge [39].

Boundary Layer Near-Wake Far-Wake

Y

£0 i x*xYw

e increasing

Figure 22. Regions of Application for Turbulence Model
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4.2 Modification of the Incompressible Code

In order to compare the numericaily calculated lift with the lift predicted by

Theodorsen's function, it is necessary to forcibly oscillate the airfoil at moderate

rotational rates (reduced frequencies, k, greater than 2). The incompressible code

utilized in Part I was not robust enough to sustain these rotational rates. At values

as low as k = 2, computational instabilities arose, and the time history of C1 began

to display asymmetric behavior. Difficulties of this type have been experienced b-:

other investigators [41, 42]. The difficulties arose only at increased rotational rates.

The low frequencies associated with the initial onset of unsteady motion did not

destabilize the computations. Hegna [41] and Meh' a [35] have also applied the same

procedure with success when the rotational rates were low.

To approach the higher rotational rates, the incompressible code was modified

to employ a time-dependent coordinate transformation [34] of the form

S= V(x,Y, t), 7 = i7(x,y,t), r = t, (69)

with traj,9formation metrics given by

S= -Y,7j* -?, ,J-1, 6 = -

77, = -YCki 1  = -xJd-, 17t= -. rlz - ,r77,.

The grid speeds are determined by z, = -S19 and y, = Qi, where t and ý represent

the components of the momen arm between the axis of rotation and the point in

question (see Figure 23). The Jacobian of the transformation is given by

X7 - 2 0.
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Applying this transformation results in an identical form for the vorticity-transport

equation (cf. Eq. (29))

wt+tAw(+VWl (70)
Re

provided the convective coefficients are modified as

fi = T1~i-1 + ýt = + 17t.

In a similar fashion, the calculation of pressure presented in Part I (Eqs. (34)-(35))

is modified to produce

(Ut + &N~ + 7)tVu) + j'('IF,,u -'I ku1) + j'(XCPI) - X =P 1 V2 V, (71)
Re

(Vl~g +this 1transfom+o resultsv in~,, +n identipJ for for~ th (72)t-raspr

and these equations are manipulated to yield

1 1
S[-~(0 3Wt - 1 Wn,,) + WdU,7 + Y(V,) -=T,(Xu + (70

-X((Ut + ,U• + + -(tPU) - Y P(Vt + 6)V + -•ev'), (73)
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11
A= -ý'[' O - 01WO) + *'I'xU17 + Y,7V,,) - 'I',(Xz,,ts + W

-X,,(Ut + &t + ,7,U,) - y,,(vt + 6Vt + ,7iV',). (74)

The quantities Oi are the coefficients associated with the transformed Laplace oper-

ator, and are defined in Eq. (28). As in Part I, Eq. (74) is integrated along a line of

constant ý to obtain the pressure at the leading edge of the airfoil, while Eq. (73) is

integrated along the upper and lower airfoil surfaces to obtain the pressures there.

No further simplification of Eq. (73) is assumed along the airfoil surface.

A fundamental difference in the present approach, as compared with the method

presented Part I, is the application of the boundary conditions. In Part I, the equa-

tions were expressed in a non-inertial frame, and the inclusion of the apparent body

forces (centrifugal, tangential, and Coriolis) accounted for the non-inertial character

of the reference frame. For such an approach, the velocities on the airfoil surface are

zero and the freestream velocities vary as the airfoil oscillates. Conversely, when ap-

plying the time-dependent coordinate transformation, the freestream velocities are

fixed and the surface velocities are equal to the actual velocity at a point on the

moving surface. This, of course, simplifies the application of the freestream veloci-

ties, but complicates those applied on the airfoil surface. The non-zero velocities on

the surface necessitate a change in the definition of the operator L3 (cf. Eq. (57))

and the expression for the discrete boundary condition for vorticity on the airfoil

surface

L3*i + w, + S = 0, (75)

where S represents a known source term arising from the prescribed velocities on

the airfoil surface. In delta form, Eq. (75) becomes

L3Aob + Anw = -L3"- _ n - L3 •+l - Sn+1, (76)
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where

--y cos a - x sin a, (77)

and the components of S are given by

Si+ =L j-2l n+ n+1

, j-2 [-2(01 + 02)a'+ 1 + 02a"+1 + 42ag_1 + 1b:,

+ b,'i -13_t + 04 cr' + +5da+1], (78)

and to first-order accuracy in time, which is consistent with the overall time-accuracy

of the scheme,

a7+1 = (Uy-vt -- (ul = - vz)' -_ V _ Aq[IYy + Xt) _- f 2 (Xq -_ yt)],

bin' = (2vz,, - 2uy,,)!+' = (2vz,1 - 2uy,)!- + 2Atfl(ft, + qyY)!

ci+1 = (Uyt - VzX)?+1 = (uy( - )- o Atfl(y(f + izC)?,

d -i+1 = (uy,7 - vx.,)!+1 = (uy,7 - VX,,)! - Atf?(qy,7 + . (79)

The superscript n refers to the temporal index while the subscript i refers to the node

index on the airfoil surface. The terms t and 9 represent the respective moment arms

from a point on the airfoil surface to the center of rotation. The terms fl and 1ý are

known from the prescribed nature of the rotation.

In addition, the streamfunction on the surface is now nonzero. Thus Eq. (45)

is modified to

T., = 0. + i. = -0(0y + iz) = -SN, (80)

-(y +ix),

leading to

•, + i. + f = 0. (81)
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In delta form, the surface boundary condition on streamfunction is written as

A"vk. = -(,On + in) - A'i). -_ f"+l"+l, (82)

with first-order accurate approximations

An,= On+1 -n
Se - Y*

= Yn+1 Cos a - xn+l sin a - Yn cosa , + n sin a

= (Yn+1 _- Y) cos a _ (,n+l - X') sin a,

Ani. - At(yV cos a - x, sin a), (83)

and

1nn+ - fln + Ath, (84)

f-+l (iy + i,)n+l,

f+l+ - (9 + yTAt)(yn + Y, At) + (±- + XAt)(X- + XAt). (85)

A comparative Fourier (von Neumann) stability analysis between the approach

indicated in Part I and the time-dependent metric approach described in this section

is presented in Appendix B. The stability analysis is applied to the linearized, viscous

Burger's equation modeling the vorticity-transport equation.

4.3 The Genesis of Theodorsen's Function

The unsteady aerodynamic forces on an oscillating airfoil in potential flow were

determined by Theodorsen [15] in 1935. The development is based on potential flow

theory and an assumed distribution of circulation in the wake. The magnitude of

the circulation is established by imposing the Kutta condition at the airfoil trailing

edge. The solution is resolved into Bessel functions of the first and second kind,
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and is expressed in terms of the reduced frequency k. Small perturbations about an

equilibrium solution are applied and the resultant motion is assumed harmonic. The

development of the velocity potentials proceeds by dividing them into two groups:

those due to the noncirculatory flow, and those due to circulatory flow.

Pursuing the noncirculatory potentials first, the airfoil is represented by a unit

circle (see Figure 24). The potential of a source of strength 4 at the origin is given

by [15]

S = log(X2 + y2). (86)

For a source c at (xh, Yj) on the unit circle, the potential is

_ log[(_ _ X)2 + (y _ yI)21. (87)
4w

Placing a double source 2c at (zl, Iy) and a double negative source at (z1 , -yI), the

potential becomes

2 = - log T-)2 + (y _ yl)2 (88)
21r (Z XI) 2 + (y+ y)

2
'

The function W on the unit circle provides, upon integration, the surface potential

of line pq (see Figure 24). To determine the potential due to a, substitute for the

source strength

S= - U ab, (89)

where U is the freestream velocity, and b is the half-chord. Taking y = %1- X2 on

the unit circle and integrating yields the potential due to angle of attack,

-Ucib [1 log (X - X1 )2 + (y_ -Yl)(

ý° 27 r I (X - X) 2 + (y + y) 2 x, (90)

or

= Uabv'l -- x2. (91)
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The potential due to an airfoil in downward motion with a velocity h (positive

downward) is obtained by substituting h/U for a in Eq. (91).

- hb= YT- x2. (92)

The potential for an airfoil rotating about a point located a distance a (positive to

the right) from the midchord point is determined by considering a superposition of

potentials. The first being the potential associated with rotation about the leading

edge, and the second associated with the vertical motion with velocity -&(1 + a)b.

The latter results in a modification to Eq. (92), resulting in

=, = -&(1 + a)b2v- -- x2. (93)

The potential due to rotation about the leading edge with angular velocity & is

described by setting e = -(xi + 1)0b2 in Eq. (88) and integrating

b2 log (X - z1 )2 + (y _ y-)2.
2w (X= -- log + (1)dxy, (94)

or

=1LE -= &--(x + 2)-V0 -- x 2. (95)

As indicated, the potential for an airfoil rotating with angular velocity 6 about a

prescribed axis of rotation is the sum of Eqs. (93) and (95)

SVa = &.LE + CA,, (96)

Wd,= 6b2(1x- a)2 V X2. (97)

Employing the extended Bernoulli equation, the local pressure is, to within a spatially

invariant function of time

P= v2 +2L)W (98)
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y

Figure 24. Conformal Map of Wing Profile with Circulation Element in Wake

where V is the local velocity and V the velocity potential at a point. Substituting

V = U + 2, the pressure difference between the upper and lower surfaces at a point

x is given by

Ap = -2j,(Uaw+ ý). (99)

Substituting the individual velocity potentials (Eqs. (91) and (97)) into Eq. (99)

and integrating produces the net force on the airfoil for the noncirculatory potentials

"P = Apdx = -pb 2[U,& - abr]. (100)

In a like manner, the circulatory velocity potentials due to an assumed distri-

bution of circulation of strength A(x) extending from the trailing edge to T. = +0

(see Figure 24) are derived. The potential at a point (xi, yI) on the unit circle due

to a vortex element pair of strength Al" is given by Theodorsen [15]

1= K arctan ( arctan ( --Y1X )] , (101)
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Introducing the transformation

Xo + X;' = 2xo, (102)

or on the x axis

Xo = X. + px-1, (103)

with the further substitutions (on the unit circle)

X1 = x, (104)

Y1 v'i"-, (105)

provides

-r(xiyi) 2-P arctan (- 1)" (106)

Equation (106) gives the clockwise circulation about the airfoil due to the vortex

element -ArF at xO. The extended Bernoulli equation (Eq. (99)) is again applied.

However, the vortex element -Ar is regarded as convecting to the right relative to

the airfoil with velocity U

a a- O o aXoU " (107)

Hence Bernoulli's equation is written

p = -2pU + (108)

Differentiation of Eq. (106) pro-ides

a _ Ar (109-)1
aZx = 27r (x - x)/ ' (109)
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and
x --- 2 --x2 (110)ýT 2v (Xo - ) x)• "

Integration provides the force on the airfoil due to the element -At

zU -r+ dx, (111)

APr = x. (112)

Further integration, with Ar = Adx, along the wake, provides the total circulatory

force on the airfoil

Pr = -pUb00 ,---- Ado. (113)

The magnitude of the circulation is determined by imposing the Kutta condi-

tion, requiring that the velocity components are finite at the trailing edge

09 (W + o r)+ 00. (114)

Introducing the velocity potentials (Eqs. (91),(97), and (106)), Eq. (114) is further

expressed by the relationship

Q=1- TAdxo=Uc+b(I-a),. (115)

The distribution of circulation in the wake is assumed harmonic, with the substitu-

tion

A = A.exp{i[k(s/b- xo) + 41}, (116)

where s = Ut is the distance from the first vortex element to the airfoil, i = VC-T,

and k is the reduced frequency representing the wavelength. The circulatory forces
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Figure 25. Real and Imaginary Components of the Theodorsen Function

on the airfoil then become

Pr = -2pUbnrQC(k), (117)

where the complex function C(k) is the Theodorsen function, given by

X _ _e-ikxodx,,

C(k) M 7- :2 1- e(118)

The real and imaginary parts for the complex function C(k) = F(k) + iG(k)

are shown in Figure 25.
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The net force on the airfoil is then obtained by summing the forces due to the

noncirculatory potentials with those of the circulatory potentials

P = Po+Pr,

= -pzb2 (U& - ab&) - 27rpUbC(k) {Ua + b(I - a)i}. (119)

The expression for P is then nondimensionalized. Along with a small angle as-

sumption and the substitutions 0 = -a, 0 = -(c/U)&, and 0 = -(c/U) 2&, the lift

coefficient can be expressed as

Ck = 174 + lari - C(k) [2+rO+( - a),0]. (120)

where the time derivatives of 0 are now taken with respect to nondimensional time,

i.e., aerodynamic time units nondimensionalized by c/U. This is tht form used for

comparison with the numerical results. It should be noted that for the steady case

0,0 -- 0, (121)

with

F(k) -- 1 and G(k) -- 0, (122)

so that

Ck = -27rO = 27ra. (123)

as predicted by thin-airfoil theory [43].

4.4 Beam and Warming Code

The Beam and Warming code of Visbal [27] applied to the two-dimensional,

compressible Navier-Stokes equations is utilized for comparison with the modified

incompressible code and the results predicted by Theodorsen's function. The Beam

63



and Warming algorithm [44] is an implicit approximate-factorization scheme, and is

implemented by Visbal for a moving O-grid configuration. The same time-dependent

coordinate transformation described earlier is utilized

= OxYt0, 17 = r (,y,t), T = t.

The resulting equations, in strong-conservation law form [39], are

a ( aE 1  0E2a + wg-+0-T:

oV1(UU•)) + wV2(UU7) eW(WUO) +aW2(U, U)a• + 0 + o/ + oh/ '(124)

where

PU

Pv

Pe

pU

E = , (126)
pvU + Gp

pV

E 2•= J puV + 77-p (127)
pvV + 77yp

(p + pe)V - 77tp
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0

V 1=i ,u + b2Vf (128)
b2uf + b3v4

buut + b2(vu( + uvt) + b3vv( + beTt

0

V 2 =iJ ,n + Cv (129)
C3tU 1 + C4 v,,

c uu,7 + c2uv,, + c3vu,, + c4vv,, + c5T,,

0

W 1 =i C1Uc( + C3V0 (130)
c2ut + c4v•

cOuut + c2vu( + c3uvf + c4vv( + c5Ti

0

W2 = dju,7 + d2V,7 (131)

d2u,7 + d3v,7

dluu, + d2 (vu, + uv,,) + d3 vv, + d4 T,,

where U and V denote the contravariant velocities

U = ,•.u + ýv + , (132)

V = 7-Tu + 77v + 77t. (133)

and bi, ci, and d, represent the viscous coefficients [39]. Closure for the equations

is enforced by Sutherland's viscosity formula, a constant Prandtl number, and the

perfect-gas law.

The implicit implementation is applied to the strong conservation form of the

Navier-Stokes equations. In delta form, with first-order Euler time differencing, the
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scheme is written as [14]:

aA n• -•I I + At (8B 492,7 ,O
I + At - )J - _--1ý)IAr

-At (E, -V 2 )n + (E2 -_ W - W2). (134)

The scheme provides the correction vector, AU, to the current solution, &n

-n+l = Un + AU, (135)

where n represents the temporal index such that t = (n - 1)At and A, B, M, and

N represent the Jacobian matrices [39].

A =- -, B= . (136)
'90 awu

M = av' N - - . (137)

To maintain numerical stability and provide smooth solutions, explicit fourth-

order damping is added to the right-hand side of Eq. (134)

D( f= ,AtJ,7 I U,l.j, (138)

and implicit fourth-order damping is applied to the left side of Eq. (107)

D,= -f,tAtJj,,6,un, (139)
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where b is a second-order accurate, central-difference operator. The recommended

values of the damping coefficients are [45]

f, = O(0.01), fi = 2fe, (140)

The values employed for this application are

f, = 0.02, fi = 0.04. (141)

67



V. Results and Conclusions: Part II

5.1 Overview

The focus of Chapter 5 is delineated into two major areas. The first area of

exploration is the numerical prediction of flutter onset in the turbulent regime. As

indicated in Part I (cf. Figure 1), there is a fundamental difference between the lam-

inar and turbulent regimes, and this is reflected in the numerical results. The onset

of flutter in the laminar, low-speed regime occurs at a significantly lower Reynolds

number than the experimental results indicate [11, 15]. The original rationale for in-

corporating a turbulence model was to address this issue. The incompressible code

is well validated in the low-speed, laminar regime (see Appendix A) for the case

of the circular cylinder. However, the experimental efforts for the airfoil case have

been exclusively concentrated in the higher Reynolds number range (Re > 5 x 105)

[11, 15, 12]. Therefore, the Baldwin-Lomax turbulence model is incorporated to cap-

ture the experimental data. Previous computational efforts in this regime include

the work of Strganac, Mook and Mitchum [21], who numerically investigated sub-

sonic flutter for a finite wing using a potential flow model. As previously discussed,

Guruswamy [16] completed a similar effort using the full Navier-Stokes equations.

Robinson et al. [20] have applied the Euler equations to predict the aeroelastic

behavior of a wing with a deforming mesh.

The second area examined in Chapter 5 is the correlation between the numer-

ically predicted aerodynamic transfer function and that obtained by Theodorsen's

potential flow development. The effort is undertaken with the goal of establishing a

basis for the numerical prediction of flutter onset. This is accomplished by compar-

ing the theoretical lift coefficient predicted by Theodorsen's function to the numer-

ically predicted lift coefficient. A NACA 0012 airfoil is oscillated with a prescribed

frequency and amplitude to generate the unsteady lift coefficient. The modified in-

compressible code and the compressible code of Visbal are applied in this capacity.
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Chaing and Fleeter [46] have undertaken a similar computational effort, computing

the unsteady pressure distribution over an airfoil and comparing the results to those

generated by Theodorsen's method. This was accomplished by applying a locally

analytical method to the solution of the potential flow equations.

5.2 Flutter Onset: Comparison with Theory and Experiment

In this section results are presented in which the numerically predicted flutter

onset velocity and those established by experiment and predicted by theory are

compared. The numerical results are obtained using Grid 1, with a NACA 0015

profile substituted, as per the experiments of Yang and Zhao [11]. The incompressible

code used in Part I is used along with the modified Baldwin-Lomax turbulence model.

To allow operation of the code at the higher Reynolds number range, i7-upwinding

of identical form to the f-upwinding described in Part I is applied. The theoretical

and additional experimental results are due to Theodorsen [15].

The numerical procedure employed is similar to the method described in Part I

for the laminar case. A steady solution is obtained at relatively low Reynolds number

(Re 2 2 x 105). The Reynolds number is then incremented and a new solution

is obtained. The increase in Reynolds number introduces perturbations into the

numerical flowfield, which are either damped or amplified to an unsteady solution.

The Reynolds number increase was on the order of 5 x 10i, however, smaller incre-

ments (_- 104) were applied when the aerodynamic damping was reduced, i.e., as the

critical point was approached.

The results are shown in Figure 26. The general trend of the numerical data is

correct. However, the results are seen to be a function of the natural frequencies, u;o

and Wh, rather than the ratio. This is in contrast to the theoretically predicted result

[15]. The reason for this effect is the subcritical nature of the bifurcation. At lower

values of w0 and Wh, a more dynamic augmented system is provided; perturbations

are amplified more readily in this case. The presence of perturbations of increased
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magnitude then allow the possiblity of approaching a limit-cycle attractor rather

than an equilibrium attractor. As a further consideration, consider a pitch-axis

case where the value of w, is fixed, but K, I,,, < 1. In this case it is obvious

that the airfoil will be extremely responsive to perturbation. Additionally, Yang

and Zhao [11] have observed a plunge-dominated, unsteady mode that could only

be excited by providing an initial displacement in plunge. This result represents a

differential response to perturbation level and thus offers experimental evidence of

subcritical bifurcation. The results shown in Figure 26 are explained on this basis,

i.e., subcritical bifiurcation and a consequent differential response to perturbation

level. For instance, as wa is decreased (for a fixed airfoil mass and momemt of

inertia), the torsional spring constant K1, is reduced. The weaker torsional spring

allows a more dynamic response to aerodynamic perturbation, i.e., the aerodymamic

perturbations introduced by the Re-continuation method explained above.

There are additional sources of error in the numerical computations which

should be addressed. Firstly, the Baldwin-Lomax turbulence model has been criti-

cized in unsteady flow applications [14, 47], and in the ability to predict self-induced

oscillations [16]. Secondly, compressibility effects remain unresolved and are likely

a factor in this regime. Thirdly, when employing the turbulence model at higher

Reynolds numbers, timestep requirements became too restrictive, and therefore, ex-

amining results with a finer grid was computationally prohibitive. And lastly, in the

course of subsequent computations, it became apparent that the concurrent appli-

cation of 77- and ý-upwinding, when combined with the non-conservative form of the

equations, impacted the phase response of the aerodynamic output. Nonetheless, the

results do indicate clearly the demarcation between these results and those presented

in Part I, and the role of turbulence in this demarcation (See Figure 1).
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Figure 26. Flutter Onset Velocity as a Function of Whiwa.
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5.3 Comparison with Inviscid Aerodynamic Transfer Function

In this section, a basis is established for the application of the considered

numerical algorithms to the prediction of flutter onset for an airfoil. The theoretical

development of the prediction of flutter was pioneered by Theodorsen [15], using

potential flow theory in conjuntion with an assumed distribution of circulation in

the wake and the application of the Kutta condition at the trailing edge. In the

theoretical approach, the derivation of Theodorsen's function models the inviscid

aerodynamic transfer function. It provides the aerodynamic response to an input of

prescribed amplitude and frequency.

The general intent of the numerical efforts in this regard is to compare the

aerodynamic transfer function described by Theodorsen to that predicted numeri-

cally. This is done for two codes: the modified form of the incompressible code and

the compressible code of Visbal [271, modeling the full Navier-Stokes equations (see

Chapter 4). The approach is to apply a forcing function, angle of attack, a(t), of

known amplitude and frequency and assess whether the numerical results correspond

to the theoretical results of Theodorsen, across a broad range of frequencies. Since

Theodorsen's approach is derived assuming small perturbations about an equilibrium

state, the amplitude of the angular oscillation is fixed at 0.01 radians. The airfoil

is oscillated at reduced frequencies, k, ranging from 0.05 to 6, with the Reynolds

number varied between Re = 100 and Re = 3 x 106. All cases are initiated from an

equilibrium solution at a = 0 for a given Reynolds number.

Results are compared in Figures 27-32 for the compressible code and Fig-

ures 33-36 for the incompressible code. The lift coefficient predicted by Theodorsen's

function is denoted Ck, (cf. Eq. (120)) and is represented by long-dashed lines in Fig-

ures 27-36. C1 refers to the numerically computed lift coefficient, and is represented

by solid lines. The angle of attack, a, is indicated by short-dashed lines.

The agreement with Theodorsen's function is seen to be a function of the

reduced frequency k, but in general the results are good. An exact correspondence
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was not anticipated; differences in the approaches remain, primarily consisting of:

"* Reynolds number effects

"* airfoil thickness effects

"* validity of the assumed distribution of circulation

"* grid-related effects

"* artificial dissipation effects

"* compressibility effects

The theoretical result is derived assuming an inviscid fluid, corresponding to an

infinite Reynolds number. The numerical computations are constrained to finite

Reynolds numbers, and therefore some differences due to Reynolds number effects

may remain. This is particularly true for the incompressible code, since it is con-

strained to a lower Reynolds number range than the compressible code. The dis-

tribution of circulation assumed in the theoretical development (cf. Eq. (116)) in

conjunction with the application of the Kutta condition (cf. Eq. (115)), allows a

framework for incorporating viscous effects into the inviscid analysis. The manifesta-

tion of vorticity in the wake and the satisfaction of the Kutta condition for the viscous

codes are accomplished by a completely different mechanism, i.e., the direct solution

of the field equations with an associated set of boundary conditions. Grid-related

effects are important because the moving grid establishes time-dependent numerical

errors which must be damped. The ability to damp these errors is dependent upon

the grid resolution. Errors of this type occur in addition to the discretization or

truncation errors associated with numerical computations performed on a fixed grid.

Artificial dissipation can further influence the numerical results, for instance, it was

mentioned earlier that concurrent application of ý- and v7-upwinding introduces phase

errors into the numerical calculations. And lastly, for the case of the compressible

code, compressibility effects are a factor. Of the above items, only Reynolds number

effects are addressed in a systematic fashion.
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The most meaningful trend is the convergence of the numerical results to those

of theory as the Reynolds number increases, i.e., as an inviscid solution is approached.

This trend is evident at every frequency considered, except for one case for the in-

compressible code, which will be addressed later. The results for the compressible

code are discussed first. More runs were performed with this code because the re-

quired modifications were much simpler, and data was collected during the develop-

ment of the modified incompressible code. All displayed results for the compressible

code were performed using an O-grid with grid characteristics equivalent to Grid 1.

The freestream Mach number was set at 0.2, with fourth-order explicit and implicit

damping levels fixed at f, = 0.02 and fi = 0.04. No second-order damping was

employed. Previous numerical studies [48, 49] indicate that the timestep required

for an accurate temporal resolution may be less than that required for numerical

stability. To ensure accuracy, the timestep, At, is adjusted to enforce a minimum of

1000 timesteps per period of oscillation, as recommended by Stanek and Visbal [49].

The first result shown is for k = 0.05, see Figure 27. As the Reynolds number

is increased from 100 to 3 x 106, a clear convergence to theory is apparent. The trend

occurs for each increment in Reynolds number; the amplitude appears almost exact

for the Re = 3 x 106 case. A slight phase error between CI and Ck is not rectified

by the increased Reynolds number. The k = 0.2 case shows an identical trend; the

amplitude is nearly exact, but the phase lag is slightly exacerbated at this frequency.

At k = 1, an interesting transition appears, as the error appears to express itself as

an amplitude rather than a phase error. The amplitude shows a slight error while

the phase lag is negligible. An increase to k = 2 appears to resolve both the phase

and amplitude errors, as the solution at Re = 3 x 106 displays almost no amplitude

or phase error. The results for k = 4 mimics the results for k = 0.05 in that the

amplitude error now appears negligible but the phase error is reintroduced. Finally,

the results for k = 6 appear to follow the same trend as the k = 0.2 case, i.e.,

the phase lag is exacerbated compared with the prior result. The results indicate a
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cyclic trend in the phase and amplitude errors. The graphical presentation of this

trend is shown in Figure 38, which summarizes the phase and amplitude errors as a

function of k, where the phase error is indicated as a percentage of the period and the

amplitude error is based on peak values. It is expected that beyond k = 6, numerical

errors would begin to predominate, and that poor numerical results would eventually

ensue. See the stability analysis presented in Appendix B for an indication of this

behavior.

The results for the incompressible code are displayed in Figures 33-36. Several

difficulties arose in the application of the incompressible code. The primary difficulty,

already mentioned, is the problem associated with concurrent application of ý- and ,q-

upwinding in conjunction with the non-conservative form of the equations. It became

apparent that the application of rl-upwinding produced unwanted phase errors in

the solution. However, 77-upwinding is required to approach the higher Reynolds

numbers. Therefore, 77-upwinding was not applied to assess the correspondence with

Theodorsen's function, This, in turn, imposed a restriction on the Reynolds number

range, and a more stringent timestep requirement. For this reason, the maximum

Reynolds number considered in this case was 2000. However, this proved satisfactory

to demonstrate the trends previously observed with the compressible code. It should

be noted that for Re > 4000, the numerical results were degraded, as a function of

k, for the reasons expressed above.

Figure 33 shows the progression in Reynolds number for k = 0.05. A clear

convergence to the theoretical result is indicated. However, at Re = 2000 there

is still a small amplitude error. Figure 34 displays the results for the k = 0.2

case. Again, a clear convergence is noted, with a very close agreement in both

phase and amplitude for Re = 2000. The results for k = 2 (Figure 35) also show

close agreement at Re = 2000. The limitations of the incompressible code becomes

apparent at higher frequencies, as the results for k = 4, shown in Figure 36, indicate.

The results appear to be converging as Re increases from 100 to 500, however, when
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Re is increased to 1000, the solution is degraded rather than improved. This result is

attributed to the lack of dissipation in the ,7 direction. This argument is supported

by the apparent convergence for the lower Reynolds numbers, where the natural

dissipation is presumably sufficient. However, as the Reynolds number continues

to increase, the natural dissipation becomes insufficient. Additionally, this problem

predominates only at higher frequencies, when the oscillations in velocity normal

to the surface assume a larger magnitude, exacerbating the difficulties due to the

lack of ri-upwinding. The trend continues to develop as the solution at Re = 2000

exhibits increased amphtude, with slight variation in peak amplitudes noted.

The convergence to the theoretical result is quantified by defining a norm

II"ACII - Z•(c - Ck) /N, (142)

where N is the number of discrete points over which the summation is applied. The

summation is applied over I periods, where I is an integer. The beginning of a

period was taken to be when Ck = 0, which generally corresponded to the least

error. The variation of IIACuII with Re for k = 0.2 is displayed in Figure 39 for the

incompressible code.

A parametric investigation is presented in Table 3. The results were computed

using the compressible code, at k = 1. Case 1 represents the baseline result presented

in Figure 29d. In cases 2 through 4 the artificial dissipation levels, f, and fi, were

reduced by a factor of two, successively. In cases 2 and 3 there is a slight increase in

IIACuII , indicating that the initial dissipatien levels were required to provide suffi-

cient damping for the case of the oscillating airfoil. The dissipation levels employed

in case 4 were insufficient and resulted in divergence. Case 5 explores the influence

of the turbulence model. With the turbulence model active, there is no discern-

able change in the computed results, and IIAC1II remains invariant to five significant

figures. Cases 6 through 11 explore the impact of compressibility by incrementing
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the Mach number from 0.2 to 0.5. Initially, (case 6) there is a slight improvement

compared to the theoretical result and IIACiII decreases slightly. However, as Mach

number continues to increase, a pronounced degredation in the results ensues, and

1iAC111 increases by an order of magnitude (case 11). Cases 12 through 15 examined

the trend for increasing Reynolds number (beyond 3 x 106). The Reynolds num-

ber was increased in increments of 3 x 106 up to 15 x 10r. The results indicate a

continued, albeit gradual, convergence to the theoretical result. Finally, in cases 16

through 19, a limited grid refinement effort was undertaken. A slight degredation

in accuracy was noted for the finer grids, when compared with the coarse grid, as

IIACII increased slightly (cases 17 and 19). This may be due, in part, to a better

resolution of the wake and boundary layer, where the resolved viscous effects may

have an influence. It should be noted that for grids finer than 60x25, the turbulence

model must be employed to prevent secondary oscillations from developing. The

secondary oscillations further increase the IIACdII norm, as indicated in cases 16 and

18. The development of the secondary oscillations, due principally to the reduced

levels of effective dissipation when the turbulence model is not applied, is shown in

Figure 37.

Also displayed in Figures 40-43, at r = 1, 2, and 3 are the vorticity contours in

the wake. The solutions were obtained with the incompressible code using Grid 2 at

Re = 500 and k = 2, starting from an equilibrium solution at 7- = 0 and a = 0, with

a peak angular amplitude of approximately 2 degrees. Positive vorticity is generated

on the lower surface, while negative vorticity predominates near the upper surface.

The effect of the oscillations on the wake development is pronounced, as the shed

vorticity indicates. The aforementioned difficulty concerning t7-upwinding is evident

in the wake. That is, with no 77-upwinding applied, there is no effective damping in

the r direction except for that provided by natural dissipation. A close examination

of the contours in the wake reveals negligible oscillations occuring along the contours

in the . direction. However, increased numerical oscillations are noted when the
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Case No. O-Grid Re Mach fh fi ]turb IIACi II
1 60x25 3 x 106 0.20 0.0200 0.0400 off 6.7613 x 10-3

2 60x25 3 x 106 0.20 0.0100 0.0200 off 6.9609 x 10-3

3 60x25 3 x 10" 0.20 0.0050 0.0100 off 7.3971 X 10-3

4 60x25 3 X 106 0.20 0.0025 0.0050 off diverged
5 60x25 3 x 106 0.20 0.0200 0.0400 on 6.7613 x 10-3
6 60x25 3 x 106 0.25 0.0200 0.0400 off 6.5250 x 10-3

7 60x25 3 x 106 0.30 0.0200 0.0400 off 6.7287 x 10-3

8 60x25 3 x 10" 0.35 0.0200 0.0400 off 7.8803 x 10-3

9 60x25 3 x 106 0.40 0.0200 0.0400 off 3.3959 x 10-2

10 60x25 3 x 107 0.45 0.0200 0.0400 off 3.4943 x 10-2
11 60x25 3 x 106 0.50 0.0200 0.0400 off 3.4351 x 10-2

12 60x25 6 X 106 0.20 0.0200 0.0400 off 6.7163 x 10-3

13 60x25 9 x 106 0.20 0.0200 0.0400 off 6.7011 X 10-3

14 60x25 12 x 106 0.20 0.0200 0.0400 off 6.6935 x 10-3

15 60x25 15 × 1Or 0.20 0.0200 0.0400 off 6.6889 x 10-3

16 125x50 3 x 106 0.20 0.0200 0.0400 off 1.2043 x 10-2

17 125x50 3 x 106 0.20 0.0200 0.0400 on 8.1662 x 10-3

18 208x108 3 x 10V 0.20 0.0200 0.0400 off 2.6902 x 10-2

19 208x108 3 x 106 0.20 0.0200 0.0400 on 7.7829 x 10-3

Table 3. Tabulated Parametric Results; Reduced Frequency, k = 1

contours are oriented in the r direction. The oscillations cannot be solely attributed

to grid courseness in the wake region because, for the particular region in question,

the grid spacing in the ý direction is actually coarser than that in the r direction,

particularly near the branch-cut (cf. Figure 5). A comparison with the O-Grid case

is offered in Figure 43, using the compressible code at the same conditions. In general

the development of vorticity near the trailing edge and the subsequent convection

into the wake is less pronounced. There are two possible reasons for this. Primarily,

the differences in topology are considerable at the trailing edge. The O-grid has a

rounded trailing edge while the C-grid ends in a sharp point. The sharp trailing edge

in the case of the C-grid appears to act as a vortex generator as the airfoil oscillates.

Another significant difference is the application of the boundary conditions. The

branch cut, for the case of the C-grid, extends from the trailing edge to the outer

computational domain. In contrast, the branch cut for the O-grid extends from the

leading edge to the computational boundary.
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5.4 Conclusions

The influence of the turbulence model is demonstrated in the numerical results

for the incompressible code. Implementation of the modified Baldwin-Lomax turbu-

lence model allowed the numerical calculation of flutter-onset speeds corresponding

to theoretical and experimental values for a NACA 0015 airfoil. The numerical on-

set of flutter is a function of WA and w,, independently, in contrast to the theoretical

results, which predict onset as a function of the ratio of these parameters. The rea-

son for this effect is the subcritical nature of the bifurcation. There is experimental

evidence of this as well, where Yang and Zhao 1111 noted a plunge-dominated mode

that could only be excited by a physical displacement of the airfoil, indicating a

differential response to perturbation level.

The greatest challenge to the accurate calculation of flutter onset for a given

structure is the development of turbulence models applicable in this regime. The

Baldwin-Lomax model has been criticized in the unsteady and complex flow regimes

[14, 47], and in the abilit- to accurately predict self-induced oscillations [16]. It is un-

clear at present whether alternatives, such as the k - c model [47], would be superior.

The present research indicates that the Baldwin-Lomax model may serve adequately
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in predicting flutter onset associated with bifurcations from an equilibrium state. In

such a regime, the flow is not dynamic and the application of the turbulence model

may be more appropriate. This conclusion is substantiated numerically for the case

of forced, small amplitude airfoil oscillations where the inclusion of the turbulence

model produces no discernable impact upon the computed lift time history. How-

ever, since the scope of this demonstration is limited, further research is warranted

in this area.

A basis is established to validate the aerodynamic response for the compressible

and incompressible codes and their application to the numerical calculation of flut-

ter. The strong correspondence between the lift coefficient predicted by Theodorsen's

function and the numerically calculated lift coefficient across a range of reduced fre-

quencies indicates the applicability of these codes in this capacity. The incompress-

ible code is superior to the compressible code in the low Reynolds number regime,

while the compressible code is superior across the range of frequencies and at higher

Reynolds numbers. The incompressible code fails to accurately predict the unsteady

lift for k > 4. This failure is attributed to the lack of artificial dissipation in the

q direction. The inability to apply simultaneous 17- and C-upwinding for the non-

conservative form of the equations is therefore a detriment. Possible solutions to this

problem are rewriting the equations in conservative form, the application of artificial

dissipation in conjuction with central-differencing, or both. The compressible code

also displays increased error associated with increased frequencies, k > 6, but they

are less pronounced.
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VI. Summary

This section is presented to provide a synthesis of the results and conclusions

provided in Parts I and II.

In the laminar flow regime explored in Part I, the influence of the structural

model of the airfoil on the location of the Hopf bifurcation structure has been demon-

strated. In general, the structural model allows the development of sustained, limit-

cycle oscillations in the flowfield to develop at a lower Reynolds number than would

be the case for a fixed airfoil. This effect is most evident when the structural model

incorporates multiple degrees of freedom. Coupling between the axes can occur

through either direct structural coupling, or indirectly via the aerodynamics. Single-

axis experiments demonstrate that the vertical axis has a minimal impact on the

value of Reynolds number at which the flow becomes oscillatory in the absense of

a resonance effect, while the pitch axis has a more pronounced effect. The effect of

structural damping is most pronounced in the bistable region, beyond this region, the

structural damping impacts the airfoil motion more strongly than the aerodymanic

flowfield, which will remain unsteady regardless of the structural damping level.

The structure of the bifurcation is subcritical, as the existence of perturbations

in the flowfield can initiate sustained oscillations at a Reynolds number lower than

would occur when starting from an initial equilibrium state. The influence of the

structural model may be more pronounced on the branch of periodic solutions in the

bistable region than on the Hopf point itself. In addition, the structural model is seen

to provoke additional frequency content in the time history of C1, for example. The

addition of structural elements may induce secondary bifurcations which perturb the

solution trajectory from a single, closed orbit in phase space to a more complicated

orbit. This is true in the long-term time behavior and in the immediate evolution

away from an equilibrium solution.
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The influence of the turbulence model is demonstrated in the numerical results

for the incompressible code in Part II. Implementation of the modified Baldwin-

Lomax turbulence model allowed the numerical calculation of flutter-onset speeds

corresponding to theoretical and experimental values for a NACA 0015 airfoil. The

numerical onset of flutter is a function of Wh and w,, independently, in contrast

to the theoretical results, which predict onset as a function of the ratio of these

parameters. The reason for this effect is the subcritical nature of the bifurcation.

There is experimental evidence of this as well, where Yang and Zhao [11] noted a

plunge-dominated mode that could only be excited by a physical displacement of the

airfoil, indicating a differential response to perturbation level.

The greatest challenge to the accurate calculation of flutter onset for a given

structure is the development of turbulence models applicable in this regime. The

Baldwin-Lomax model has been criticized in the unsteady and complex flow regimes

[14, 47], and in the ability to accurately predict self-induced oscillations [16]. It is

unclear at present whether alternative turbulence models, such as the k-c model [471,

would be superior. The present research indicates that the Baldwin-Lomax model

may serve adequately in predicting flutter onset associated with bifurcations from

an equilibrium state. In such a regime, the flow is not dynamic and the application

of the turbulence model may be more appropriate. This conclusion is substantiated

numerically for the case of forced, small amplitude airfoil oscillations where the

inclusion of the turbulence model produces no discernable impact upon the computed

lift time history. However, since the scope of this demonstration is limited, further

research is warranted in this area, particularly in the area of grid refinement, as it

was noted on the finer grids that application of turbulence inhibits the bifurcation

to secondary oscillations. The fundamental mode of oscillation remains unchanged

for both coarse and fine grids.

A basis is established to validate the aerodynamic response for the compressible

and incompressible codes and their application to the numerical calculation of flut-
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ter. The strong correspondence between the lift coefficient predicted by Theodorsen's

function and the numerically calculated lift coefficient across a range of reduced fre-

quencies indicates the applicability of these codes in this capacity. The incompress-

ible code is superior to the compressible code in the low Reynolds number regime,

while the compressible code is superior across the range of frequencies and at higher

Reynolds numbers. The incompressible code fails to accurately predict the unsteady

lift for k > 4. This failure is attributed to the lack of artificial dissipation in the

,7 direction. The inability to apply simultaneous 7- and f-upwinding for the non-

conservative form of the equations is therefore a detriment. Possible solutions to this

problem are rewriting the equations in conservative form, the application of artificial

dissipation in conjuction with central-differencing, or both. The compressible code

also displays increased error (when compared with the theoretical result) associated

with increased frequencies, k > 6, but they are less pronounced.

Grid sensitivities to critical parameters such as the Strouhal number and crit-

ical Reynolds number are considerable. Relatively minor changes in grid spacing

or domain size may have a sizeable effect on numerical results. At a minimum, a

limited grid refinement study is therefore required to establish consistent results.
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Appendix A. Code Validation

The validation of the incompressible code was divided into two parts. In the

first part, as reported by Lutton and Beran [5], the accuracy of the unsteady nu-

merical results was examined for the case of a circular cylinder. The cylinder was

chosen because of the availability of experimental and numerical results. In the sec-

ond part of the validation, the application of the vertical axis was examined within

the context of the aerodynamic portion of the code. The vertical axis was examined

singularly because the equation for the pitch axis is of identical form.

A.1 Integration of the Navier-Stokes Equations

The algorithm and the implementation of the algorithm are validated by apply-

ing the numerical procedure to the simulation of flow about a fixed circular cylinder.

Details specific to the application are discussed first, followed by a comparison of

computed results with data reported in previous experimental and numerical inves-

tigations.

The grid structure used for the analysis of an airfoil flow was not appropri-

ate for a similar analysis involving a circular cylinder, since a sharp trailing edge is

absent from the latter geometry. For the circular cylinder, the numerical procedure

was modified to treat an O-grid, like the one pictured in Figure 44a. Aside from

trivial changes in the numerical algorithm to account for the altered grid, substantial

changes in the application of numerical dissipation and boundary condition enforce-

ment were required. Also, an alternative grid generation technique was employed.

In the development of the governing equations for the new flowfield, the radius of

the cylinder, a, was chosen as a length scale. With the velocity field scaled by U,

a natural Reynolds number was obtained, Re. - Ua/v, which is proportional to a

97



U

tta
A "=0

(a) (b)

Figure 44. O-grid Structure: (a) Node Distribution; (b) Schematic of Boundaries

Reynolds number based on cylinder diameter, d:

Ud
Red = 2Rea.

For the O-grid, node points were distributed along rays emanating from the

cylinder center. The rays were clustered about the grid cut, AB, aft of the cylinder

(see Figure 44b). In an equivalent manner on each ray, the radial node spacing was

increased through a geometric progression, starting with a minimum value, As,,,

at the cylinder surface. The radial position of the outer boundary, R, the number

of nodes in the radial direction, J, and As,,, serve to define uniquely the node

arrangement. The angular distribution of rays was also calculated using a geometric

progression, where the smallest angular increment, 2#w/(I-1), was specified to occur

adjacent to the cut, while the largest increment was specified to occur adjacent to
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the forward stagnation point (nodes were placed symmetrically about the centerline).

Here, I is the number of nodes in the azimuthal direction and f is a free parameter

that was chosen to be 0.5.

Results were obtained using three grids, 01 (coarse grid), 02 (fine grid) and

03 (large and fine grid). Characteristics of these grids are summarized in Table 4.

The O-grid structure differs most from the C-grid structure in the wake region.

There, lines of constant v7 are basically aligned with the freestream direction for

the airfoil and normal to the freestream for the circular cylinder. Owing to the

importance of numerical dissipation in the computation of smooth wake flows, it

was necessary to switch the application of upwinding from e derivatives (airfoil) to

17 derivatives (circular cylinder). The change in the application of upwinding was

straightforward to implement, since the convection terms are handled explicitly.

Outflow conditions in the airfoil analysis were naturally enforced along the

straight boundary of the C-grid, downstream of the airfoil. For the O-grid, outflow

conditions were specified over a predefined arc, CD (see Figure 44b). The number

of nodes comprising the arc was 217, where for all calculations y = 0.15 was chosen.

The vorticity condition enforced on arc CD was w, = 0, which was evaluated using a

2-point approximation to w,,. Sa and Chang [50] applied the same outflow condition,

but over an arc defined by the local properties of ik.

After the integration algorithm was modified to incorporate an 0-grid struc-

ture, flows over a fixed, circular cylinder were numerically simulated for Reynolds

numbers between 10 and 80 in increments of 10. Drag coefficient and Strouhal num-

ber, St = frd/U, were used to compare computed results to data available in the

Grid R II J As
01 101 51 51 0.01
02 101 101 101 0.01
03 201 101 201 0.01

Table 4. Characterstics of Grids 01, 02 and 03
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Figure 45. Strouhal Number as a Function of Reynolds no. Experimental: Roshko
[28], Tritton [29] and Berger [30]; Computational: Sa and Chang [51],
and Present (Grids 02 and 03).

literature. Time-periodic solutions were obtained at Reynolds numbers equal to or

greater than 50. No attempt was made to compute the critical Reynolds number (be-

tween 40 and 50) at which the flow first becomes unsteady. A time step of 0.04 was

used for Reynolds numbers greater than 50. At smaller Reynolds numbers, for which

the computed flowfields were steady, larger time steps were taken. Time-dependent

results were insensitive to reductions of time step below 0.04. Solutions were also

found to be insensitive to changes in the geometric parameter As,. Sensitivity to

the parameters # and -y was not evaluated.

Computed Strouhal number was compared to the results of experimental and

numerical investigations in Figure 45. It should be noted that the solutions obtained

with grid 01 for Rej _> 50 were unsteady, but not time-periodic, and behaved in a

spurious manner. It is believed that this departure from periodicity, not observed

with grids 02 and 03 for the range of Reynolds number reported, is directly at-
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tributable to grid coarseness and the non-conservative formulation of the convective

terms. Thus, aperiodic solutions obtained with grid 01 were not included in the

results presented below. The experimental studies of Roshko [28], Tritton [29] and

Berger [30] and the numerical investigation of Sa and Chang [51] served as a basis

for comparison. The computed results were found to be in excellent agreement with

Roshko's data, except for grid 02 near Red = 50. Apparently, at Reynolds numbers

just exceeding the critical Reynolds number, the effects of domain size are signifi-

cant, and a domain size of R = 101 is insufficient. The trend of decreasing St with

increasing R was also observed by Sa and Chang [50] when the freestream boundary

condition on perturbation streamfunction, k = 0, was enforced. It is unclear to the

authors whether the disparity between the present data and that computed by Sa

and Chang [51] is a result of differences in the treatment of the convective terms or

in differences of grid structure. Sa and Chang employ a conservative formulation

of the convective terms, with 4th-order approximations to velocity components, and

report results for a 51 x 50 O-grid.

The drag coefficients associated with computed flowfields about a circular cylin-

der are plotted in Figure 46 versus Reynolds number. The experimental study of

Tritton [29] and the numerical investigations of Borthwick [52] and Sa and Chang

[51] were used as a basis for comparison. When Red _< 40 (steady flow), the results

of the present study show little sensitivity to grid parameters. Computed values of

Cd are 5% to 10% below Tritton's best-fit data. At a Reynolds number of 50 there

is a noticeable difference between data obtained with grids 02 and 03. The larger

domain, 03, provides a close match to the value predicted by Sa and Chang, perhaps

owing to their enforcement of a highly accurate far-field condition on strearnfunction.

As Reynolds number was increased beyond 50, computed drag values obtained with

grids 02 and 03 were quite close, but tended to somewhat exceed that indicated

by experiment. Numerical integration at Reynolds numbers beyond about 150 is

complicated by the development of turbulence in the cylinder wake (Roshko [28]).
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Figure 47. Comparison of Exact (solid line) and Runge-Kutt4 (®) Solutions: Ver-
tical Axis

A.2 Application of Structural Model

As mentioned earlier (cf. Section 2.5), the aerodynamic coefficients are calcu-

lated immediately after the calculation of 0 and w, and are treated as constants over

the interval t to t + At. This introduces a phase lag of up to At in the application

of the loads. However, at the small timesteps required for the stability of the overall

scheme, this does not introduce significant error. To substantiate this statement, the

vertical axis (cf. Eq. (18)) was examined to validate the Runge-Kutta integration

procedure. A prescribed forcing function was applied to the right-hand side of Eq.

(18):

Qs = Ao sin(wjt + 6). (143)

This equation has an exact solution (for 6 = 0) given by [53]

h(t) = A0  sin(wjt + 0), (144)

where a = 2(r, b = 1 - r 2, r = wj/wh, and e = arctan(a/b). Values for the constants

were mr= 1.0, S, = 0.0, DI, = 20.0, and K, = 25.0, for which C = 2.0. The solu-
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tion was then integrated numerically by applying the Runge-Kutta method using the

same forcing function except that in this case b was set to 0.01. This value of 6 repre-

sented the largest timestep employed throughout the numerical experiments. Most

timesteps were considerably smaller, particularly when finer grids were employed.

The results are displayed in Figure 47. No pronounced difference is evident in the

two solutions, and it is judged that the application of the lagged forcing function

with Runge-Kutta integration has a minimal impact on airfoil motion.
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Appendix B. Comparison of Incompressible Codes

B. 1 Validity of L U Decomposition Approach

The method of solution for the linear system of equations presented in Chap-

ter 2 (Eq. (59))

•A"t, = N 4 + G,(L 2 N 2 - N1 ) - d.N3,

wbire

A = -(Gl + G(L 3 ),

was chosen to be LU decomposition because the matrix A is time-invariant (for

a constant time step and Reynolds number), and can therefore decomposed into

the product of lower and upper triangular matrices once at the start of the time-

integration procedure.

The operators L1 and L2 represent the discrete form of the Laplace operator

acting on AO to satisfy the Poisson equation. Further, the operator 6 implicitly

applies the Laplace operator to A'w. However, the Poisson equation (Eq. (28)),

shown here again for convenience,

j2V 20 = 4 2kt + 010,, - 20 3 0&1 + 040f + s.5,7 = j2W

contains the terms 01 through s5:

2 + y'2,
0'2 = X17I~

03a = Xf-Tn + yyn,,

04 = j-'[OI(Y(x, - Z,,,y,,) + ,2(sIz,, - zf:y,) + 20(xfYy - yf7,)],

4,s = -j.-'[,(y,,,,x4 - z,,,,y) + 02(y(x( - -,fy() + 203(x(,,yf - y,,Z)].
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It is then required to demonstrate the validity of the described approach when the

time-dependent metric transforation introduced in Chapter 4 (Eq. (69)) is applied.

In this case the metrics are functions of time, and the 4i are functions of the metrics

and their derivatives. To this end, consider first the Jacobian i

J x- In - ZiYC 0 0,

since it is intuitively clear that for the case of a rigid grid, the Jacobian must remain

time-invariant under the action of arbitrary grid motions. Imposing a prescribed

coordinate transformation from system (1, 9) to system (x, y):

z = tcos 0 - sinO + h.,

y = sin 0 + 9cos0 + hl,

where 0 represents the angle of rotation and h., hy the respective translational dis-

placements. In this case, the metrics are related by

zX= i cos 0 - V sin 0, z, =2,7 cos 0 - 9, sin 0,

yt= t sin 0 + Y cos 0, y,= •nsin6O + gsin 0,

and further

x• = ( cos 0 - y sin 0, x1"7 = iM cos 0 - 9,, sin 0,

y = 2(f sin 0 + g cos O, Yn,, = 2,n sin O + sin 0,

xf,, = 2, cos 0 - OpCsin 0, Y(n = (,, sin 0 + sin 0,

Substituting these into the definition of J

S= (tcosO- gsinO)(t,,sinO+y,,si,'•
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-(ncos 0 - 9,, sin 0)(i,, sin 0 + g,, sin O)

- f 9(cos20 + sin2 9) - t'.qf(cos2 a + sin 2 9)

+ incosOsinO-gigcos sinO

- i,, cos 0 sin 0 + (q,, cos 0 sin 0

= 2On - 2,79,

and so the Jacobian is time-invariant, as expected. Now the process is repeated for

the 4,, starting with 01:

41 = (9 cos 0 - 0f sin 0) 2 + (. sin 0 + g cos 0)2

= •(C2 9 + sin2 9) + q(COS2 + sin2 9)

+ 2fOfcos sinO- 2ifcos0sinO

= 2 2

and continuing with 42

02 = (t, cos 0 - ,, sin 0)2 + (,, sin 0 + q? cos 0) 2

-2 (cos2 0 + sin 2O) + 92(cos2 0 + sin2 O)

+ 22,,q, cos 0 sin 0 - 21j,, cos 0 sin 0

-2 -2

and 03

3= (2 cos 0 - V sin 0)(,, cos 0 - ,, sin 0)

+ (2f sin 0 + V cos 0)(,, sin 0 + ,, cos 0)

= 2n(COS2 0 + sin 2 9) + g,?(cos2 0 + sin2 9)

+ 2fq, cos 0 sin 0 - fqg,, cos 0 sin 0

+ Aq( cos 0 sin 0 - 2,,q( cos 0 sin 0
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= , + h.

With J, 01, 02 and 0 established as time- invariant, all that remains to demonstrate

the same for 04 and Os is to examine the terms containing second derivatives in their

definition, that is,

(ynn7z- xmy)= (; sin0 + •., cos )•cos 6- V sin0)

- (2,cos -- ,sin0)( ,,sinO + 9,7cosO)

= cos 0 sin 0 + 9Ttj? co62 0

- sin2 0 - y',yj cos GSin 0

+ sin 2 0 _- t',? cos 0 Sin 0

- x,•cos 2 0 + Vy, cos 0 sin 0

=(V - i'myn),

and by permutation of subscripts, it is established in similar fashion that

Y(-,7 - y) = (Y - if),

-("yn - yfx,•) = Vo- t),

(y,,xf - zwyt)= -

(wexy - yxm) = ( -

It is therefore established that the application of LU decomposition as described is

valid.

B.2 Stability Analysis by Model Equation

To investigate the difference in the stability characteristics of the two versions
of the incompressible code, a comparative stability analysis is undertaken. A com-
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parative stability analysis of this type is not available in the literature. The stability

analysis is accomplished using a Fourier analysis (also refered to as the von Neu-

mann analysis) [54] applied to the linearized, viscous Burger's equation. Burger's

equation is selected because of the similarity to the vorticity-transport equation (cf.

Eq. (29)).

To facilitate the examination of the two methods, a similar treatment is applied

to Burger's equation. In the first case, a source term is applied which represents

the apparent body forces which are similarly applied to the momentum equation

(see Chapter 2). In the second case, a time-dependent coordinate transformation

is applied to Burger's equation, as in the modified form of the incompressible code

(see Chapter 4). The Fourier analysis is applied after discretization utilizing, in both

cases, a forward-time (first-order) and central-space (second-order) approach.

Proceeding with the Case 1, Burger's equation with source term

s = yh + 2

with y representing a free parameter, is written as

Ogu 8u 32u
9j caux 6 - 2  . (145)

The discretized equation is written as

Un+1 +nU
Uit 1 -- U +l - ul. tIL+1 -- 2u0 +j u. 1 +l3 . + C 3 1 J - 1 I I + S ,

At 2Ax AX2

or upon rearranging

• =uj- = uý& +' (uj+l- ) 1 -2U± 1 ) + S(A+).

The exact solution and the error must assume the same form [54], hence the error is
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written as u0' -u... t Assuming an error distribution of the form e. (z, t) - eateikm'

where m is a summation index in the Fourier series representing the wavenumber,

i.e.,
e(x, t) z .. e,,""

'ml

with z",, -et, we have

ea(t+AOeik I -(lAt eate• - Ict (eateik(,+A,) eateik(,-A.))"AX- ) i-; -

+ (Cte ,,(,+,) _ C"teik(-)) + S(At).

Dividing the above equation by eateik= and using the identities

Cos = (2(c + e-'o),

isin# -= 1(eO - e-'P).

where k = kxz, the resulting equation can be written as

et (12A)-. At2z - sinj8+2L A- cosP+ S(At)

= 1 +2r 2(cos#8- 1)-ir, sin/f+ S(At),

with r, = cAt/Az and r2 = pAt/Az 2.

The modulus of the amplification factor, e'at, must remain less than unity,

resulting in the stability restriction

A, = 11 + 2r 2(cos,6 - 1) - 2r, sin#i + S(At)l < 1. (146)

A similar analysis is undertaken for Case 2. The time-dependent coordinate

transformation

1 10, r
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is applied to Eq. (145) in lieu of the source term applied in Case 1. The transformed

equation is written as

au (&uc tJ/a2 z2zU au)

with transformation metrics given by

and the Jacobian defined by
1

X(

To retain the same form for the viscous terms, choose a transformation such that

= 1 and • = 0, resulting in

ctu clu &U
'r + -• = A-,(147)

where Z = c + Ct is the modified convective coefficient. Note that the redefinition of

the convective term does not directly correspond to the inclusion of a source term.

Application of the Fourier analysis for this case results in the amplification

factor for Case 2, A2,

• At,

A2 - et = 1+2r2 (cosI- 1)-i(r, + A-)sin6. (148)

Corresponding to the case of pure rotation, set z, = fly, for which =-y/J.

In comparing the amplification factors for the two cases (Eqs. (146) and (148)), it is

noted that both retain a dependence on the parameter fl, however, the source term

in the first case is proportional to f12 . In addition, the explicit dependence on

vanishes in the second case. It is also noted that the source term S contributes to

the real part of A1, while the additional terms in the second case contribute to the
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imaginary part of A2.

The parameters for the two cases were selected to represent a typical appli-

cation, with r, = 0.5, r2 = 0.375, At = .01 and fl = 1 = 1.0. In Case 1 y = 2.0

corresponding to the application of the oscillatory boundary conditions on the outer

computational boundary, while in the Case 2, y = 0.2 corresponding with the ap-

plication of the oscillatory boundary conditions on the airfoil surface. The real and

imaginary components of the amplification factors Ai = e'At are plotted as the phase

angle P is rotated through 2r. The results are shown in Figure 47. The dashed line

represents the unit circle, and thus represents a stability boundary. The solid line

in Figure 47a indicates the modulus of A&. The results show that a growth of the

amplification factor occurs for Case 1, as the source term contributes to the increase

in the real component. In the Case 2, however, shown in Figure 47b the rotational

rates contribute to an increase in the imaginary component, where there is a greater

stability margin.
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Appendix C. Direct Calculation of Hopf Point8

The conditions for Hopf bifurcation are given by Seydel [6]. Let F(y, P) repre-

sent a non-linear mapping from R/ x R into Rn, with y E R' aad 6 E R. A solution

of the system of differential equations

yt + F(y, 8) = 0

is steady-state at a point (yo, jl) if

F(y°, 60) = 0.

If further the Jacobian matrix

A= 8F

has a simple pair of purely imaginary eigenvalues A = ±iO, and the so-called

"transversality condition" is satisfied

d --( Real[A(0)l)L 3 01

then there emerges a branch of limit-cycle solutions. The period of the limit cycle is

given by 21r/0, and the initial amplitude is zero.

The following sections detail the calculation of Hopf bifurcation points for the

fixed airfoil [9] and the modifications made for the case of the moving airfoil.

C.1 Hopf Bifurcation Algorithm: Fixed Airfoil

The following analysis by Beran and Lutton [9] permits the application of the

method of Griewank and Reddien [55] to the direct calculation of the Hopf point.
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The equations of motion are recast by using an operator notation (per Section 2.5)

Llti + L2 0. + wi = 0, (149)

0. +i =0, (150)

w. + Ls(Oi + 0) -- 0, (151)

wt + G(Obi, Os,,wi, w.) = 0. (152)

The vectors of streamfunction and vorticity are ordered in the following way

where the i subscript denotes evaluation at internal nodes while the s subscript de-

notes evaluation at the airfoil surface. This ordering is performed to isolate equations

that explicitly contain time derivatives. The linear operators L, and L2 represent

discrete forms of the Laplacian operator in the Poisson equation for the streamfunc-

tion; L3 is the discrete form of the operator applied at the airfoil surface for the

vorticity.

The temporal development of small perturbations about a known, steady- state

solution ( 0°, w0 ) is assessed by making the collective ansatz

=i(t) = +E - fie.(t) At Ib -- + efheAt (153)

w,(i) = w' + fgi,, ew.(t) = w.' + fg.. (154)

Substitution into Eq. (150) establishes that f. = 0 and further substitution into

Eqs. (149) and (151) provides

Lif,+g, = 0, (155)
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L 3fi +g. = 0. (156)

The dynamic vorticity equation yields an equation, through linearization, for

the growth coefficient A

G,f, + (G + A)g, + G.*,g. = 0, (157)

where the superscript "oe denotes evaluation at (0°, w°). By expressing g9 and g. in

terms of fi, a single equation for fi can be derived

G,*,f, + (G., + A)(-Ljf,) + G°.*(-L 3f,) = 0. (158)

This equation may be recast as

LI'AfI = Afi,, (159)

where

A- (, - G L, - 6,L 3). (160)

The method of Griewank and Reddien may now be applied to the complete

system of equations, including the Hopf point criteria. The bifurcation parameter,

fl, is the inverse of Reynolds number and now represents an unknown variable. The

complete system is then

F, = Lj¢, + L2'0. + W, = 0, (161)

F2 -- 0. + i = 0, (162)

F3 = L3(Oi + i) + W, = 0, (163)

F4 = G(tk 0,,k,w.,w,; P) = 0, (164)

116



Fs = A(0pj, 0.,,wi,w.; #)pi + OLIIp = 0, (165)

F6 = A(0k, 0,,wi, w.; P)p2 - OLIp, = 0, (166)

F 7 =qTpi =0, (167)

Fs = qTp 1 = o, (168)

where p = p, + ip2 is an eigenvector and A = i9 an eigenvalue satisfying the Hopf

condition for Eq. (159). Eqs. (164) and (166) result after substituting iO into Eq.

(159) and equating the real and imaginary parts. Eqs. (167) and (168) represent

two real normalizing conditions for the vector p, where q is an arbitrary vector with

the same dimension as p. Solution of the complete system is accomplished through

the application of Newton's method and Gaussian elimination. The implementation

of Newton's method requires a linearization of Eqs. (161-168) in order to apply the

iterative scheme

A"A~=_ A"(x+ 1 - •X) = -F(x") = -F&, (169)

where A' is the Jacobian matrix, evaluated at the v-th Newton iterate:

A " = OF (170)

The iteration procedure is continued until F', or alternately AWx, becomes suffi-

ciently small. Solutions have been obtained for the case of the stationary airfoil and

have been verified by time integration and examination of the eigenvalue spectrum

of Li 1A near the Hopf point by Beran and Lutton 19].

C.2 Hopf Bifurcation Algorithm: Moving Airfoil

The following approach allows a similar calculation for the case of a rotating,

translating airfoil. To accommodate the motion of the airfoil, an extended ansatz
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set is required. A consistent ansatz set would begin, in the case of the pitch axis,

with a perturbation about the angle of attack, a = a0 + efe"e. However, there

are several disadvantages in such an approach. Firstly, the surface quantity f, is

no longer zero, and the complexity aud memory requirements of the algorithm are

significantly increased. In addition, the resulting equation set is no longer cast in

the form of a standard eigenvalue problem, as in Eq. (159), invalidating the assumed

approach. A brief development is presented to indicate the difficulties. The following

ansatz set is chosen

h = h° + efheAt, & = ho + cAfhe-t, 4 = h° + cA2fheAt (171)

a = a0 + efe"t, a = &o + eAfaeAt, & = &o + eCA2feA. (172)

Application of Eqs. (171)-(172) to Eqs. (149)-(152) provides for the relationships

L1f, + L2f. + g = 0, (173)

f, + W.a = 0, (174)

L 3(fi + if.) + g. = 0, (175)

G*.f. + G,f, + G 8.g. + (A + GOg, + GifC + G 2f.o + GA 2fh = 0. (176)

A further relationship is established between f,, fh, and f, by considering the airfoil

equations of motion, with no damping or structural coupling (cf. Eqs. (18)-(19)).

Denoting Q1 as R and Q. as Q, the equation representing the vertical axis may be

written as

mh + khh = R.

Linearization provides

(mA2 + k)fh -= (Roo,- R.O.L3 - Rt,*Ll)f.
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-(Rtfiao + R.oL,&'i + Rt,..LI )f., (177)

Similarly, for the pitch axis

l + k =Q,

(IA2 + k.+ Q+0Q ,,, + Q` L3 g.+ Q L2J.)f, = (Q*, - - Q,,, L )fi. (178)

Returning to the vorticity-transpoi-t equation and substituting provides
°L",X °LS -I(Q° - Q0L3

A[L 1 + L2 c(IA2 + k, + Q,.•J + Q.Lh. 3 + Q, L 2 jo)(Q;, . 3 - Q ,L1 )]f,

- Go.(•A2 + k, + Qoy + Q°..,oIa 4 QL, ay)(Q,, - -

-- G°.L3 •0 (It 2 4. kr +. Qqp,*3a +. Q:L,..a) + Q,,,L2 ~yQ,,) (,- Q,, - ,.,1f

-G•,L 2 •,(IA•2 + A¢. + Q•.•W + Q 4.La>c + Q0Lh ),, 1 )
0 + 0 +QZ - Q0 L Q' L)'Q,--

+. G.- 2(I 2 + kA + Qk, + , + Qol.•yo) 1(Q, - -

+ G:.A(m2 2+k&)-{(Rf,- RoL3 - R°,L 1)- (R•ojo + R+ QL 3iha +/hL 3WS)

o8 WS oi LQ Q0 L3- Q0 -Ifo

(iA2  + Qk.yc + Qo + Q 2& ) - QL - L QIf,

+- (Gwc, 0- G.L 3 - G L 1 )f, = O. (179)

This equation corresponds to Eq. (159), arrived at in the case of the fixed airfoil.

However, the form presented does not allow a tractable application of the algorithm.

To rectify these problems, a hybrid ansatz set is applied:

" = Ao + k.fh e+, h g- + ° +- +- fh e)'-,

+ = cro + Efhe",, & = &o + A)-f e•,. (180)

The justification for this approach arises from the examination of the additional

terms appended to the momentum equation (cf. Eqs. (9) and (10)). The additive
terms fe and t2 do not contain E or h, but rather refer only to the linear and angular
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velocities and accelerations, hence only these terms are perturbed. The failure to

incorporate a perturbation about a and h otherwise has the effect of lagging the

boundary conditions.

Proceeding with this approach, the substantial change from the original equa-

tion set, Eqs. (149-152), occurs in the vorticity-transport equation, where

Wt + G(Oilk01wi,w,& = 0. (181)

Expanding G about the equilibrium state produces

G0 +fe'eAt-= G(00,-) + OG ff At+a .Oi~ G I Aget

G(, + f•,(Ae + - f•,•feAt + - f, •goe

awA a&a
+ -OG,

+- -- cAfeI' + O(•2). (182)

Upon subtraction of the equilibrium solution from the expanded vorticity-transport

equqtion and division by ceAt, an equation corresponding to Eq. (158) is obtained:

G1,f. + G;,fi + (G, + A)gi + G•,g. + (G + AG )f. + A Gf. = 0. (183)

As before, . = 0, and the relationship between fi, g,, and gi is provided by Eqs.

(155) and (156). Then a relationship between fi, fh, and f" is developed is accom-

plished by again considering the airfoil equations of motion, Eqs. (18) and (19), with

damping and structural coupling omitted. The approach is to first consider the un-

steady equation to establish the relationship for &, and then consider perturbations

about the equilibrium equation to establish the relationship for 6.

(rm.o + k&)fj, - (R, - R,,L, - R.,, L3s)fi = O, (184)

(Al. + k,.)f - (Q;, - QQL,- Q,,L3 )f, = 0. (185)
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Upon substituting Eqs. (184)-(185) into Eq. (183), the identical form is obtained

for the eigenvalue problem (cf. Eq. (159)), provided that the matrix A is redefined

as

A = (G•, - G,,L 1 - G,*L 3 )

+ G°+k!G) (° - Q0 ,L - QOL 3

+ (±G + 1 !•k ) (R(, - RL,- ,.L3) . (16)

The derivatives of G with respect to h, h, &, and & can be evaluated explicitly. The

vorticity-transport equation is (d. Eq. (29))

G = • + • --- V2w - (l - .2) = 0, (187)
Te

where

fi =-hsina + 2v& + y& - x& 2,

f2 = h cos a - 2u& - X& - yi2,

.f g f + '17f2,7.

The additional contribution to the vorticity transport equation is expressed as

(Ai - j2) = j-1 (Xzf1 , - x,,f 1 + Yf2i, - Y,,fg). (188)

The required derivatives G•, GS, G?, and G9 are then

12 1.

121



- (fl-f2

- J-(X~f I,, - X,,flf + Yf f2,7 - Yt,f2f)

- 2j 1 (xfv,, -x,7 + y,,uc - Wul,(189)

similarly

M G I
0

8-a

- J-5=, Xf' - X,,f 1C + 3Icf2' - YJ4

= j-lJ(z'CY, - X,,Yf + Yn~ - WT

=- 2, (190)

and, for the vertical axis,

(O-l -(f1-f Y2)1 Y2

- j-(xf(- sin a),7 - x,,(- sin a)( + y(cos a),~ - y,7(cos a)()

=0. (191)

Since hdoes not appear in fi or f2,

Goh 0. (192)
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The application of the modified algorithm, as described, produced an insignif-

icant change in the predicted location of the Hopf point. The critical Reynolds

number, Re•, 1 , obtained using the original algorithm (without the extended ansatz

set) for Grid 1 was 550. The modified algorithm produced a nearly identical result,

Reit = 552. The only pronounced effect that the modifications produced was a

much smaller radius of convergence. The initial values of I, and k., had to be made

very large (O(10)), i.e., approximating a fixed airfoil. After obtaining a converged

solution, the values of each parameter were reduced by approximately one order of

magnitude, and a new solution obtained. This procedure was applied until a solution

with I,, = k, = 100 was obtained. Throughout this process, the change in the Hopf

point remained insignificant. This was a rather disappointing result, the basis of

which lies in the nature of the algorithm. When applying Newton's method, it is re-

quired to evaluate the resulting system of equations at equilibrium. At equilibrium,

there is no difference between the fixed airfoil and one which can potentially move,

hence no difference is observed in the location of the Hopf point. Additionally, it is

hypothesized that the structural components principally effect the stable, limit cycle

solutions in the bistable region, therefore, a method which essentially searches the

path of equilibrium solutions (as per Figure 13) for an instability cannot capture

these solutions.

It should be added, as a criticism, that the modified approach can justly be cri-

tiqued as lacking rigor, particularly in the assumptions associated with the extended

ansatz set. However, additional evidence of a relatively straightforward nature can

be offered to support the arguments presented. Consider the time-dependent co-

ordinate transformation presented in Part II (Eq. (69)). The modifications to the

boundary equations and vorticity-transport equation are presented there, in Eqs.

(71)-(86). Note, however, that the grid speeds x, and y, and the metric terms ,

and q, are all zero at equilibrium. An examination of the aforementioned equations

reveals that when applied to the equilibrium system (Eqs. (155-162)), all unsteady
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terms vanish and the equations assume a form identical to those of the fixed airfoil,

and as in the previous case, the only potential differences arise in the application of

the ansatz and the redefinition of the A matrix.
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Appendix D. Computer Codes and Resources

The following hardware resources were utilized, in order of decreasing usage,

to perform the computational portions of this dissertation

"* AFIT Kubota (Titan 3000) Cluster

"* AFIT Convex C 220

"* AFIT Stardent ST-2000

"* Cray XMP (Wright-Patterson)

"* Cray2 (Kirtland)

D. 1 Software Documentation

This document was prepared using I&TEX on an AFIT Sun SPARCstation 2. A

short synopsis of the computer codes employed is provided, along with a description

of the subroutines contained therein. Four main codes were employed:

1. U22 - incompressible code (Part I)

2. U23 - incompressible code (Part II)

3. U26 - incompressible code (Part II)

4. BWO - compressible code (Part II)

The incompressible code U22 allows motion of the airfoil with two degrees of

freedom, pitch and vertical motion, and was used for Part I of the dissertation. U23

is identical to U22 except for the implementation of the Baldwin-Lomax turbulence

model and the application of iq-upwinding. U26 allows airfoil motion in the pitch

axis only, applying the time-dependent coordinate transformation described in Sec-

tion 4.2. This version was used for the correlation with Theodorsen's function and
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contains the Baldwin-Lomax turbulence model, with i7-upwinding eliminated. BWO

is the Beam and Warming code authored by Visbal [27], described in Section 4.4.

A short description of input/output files for the above codes and a short syn-

opsis of the subroutines employed is provided below.

U22/23/26

"* Input Files

udriver - input file to specify Re, At, etc.

foilgrd - grid file

foilout - restart file for 0 and w

foiledv - restart file for eddy viscosity (U23/26 only)

"* Output Files

foilout - restart file for ik and w

foiledv - restart file for eddy viscosity (U23/26 only)

foilvor - vorticity

foilstr - streamfunction

avt - angle of attack vs. time

clvt - lift coefficient vs. time

clk - lift coefficient (theoretical) vs. time (U26 only)

hvt - vertical displacement vs. time

"* Subroutines

AEOM - driver file for solving airfoil equations of motion

BANSOL - linear system solver for banded matrices

DECOMP - decomposes A matrix into lower and upper triangular matrices
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DERIVS - computes functional derivatives for Runge-Kutta integration

ENERGY/ERG2 - computes aerodynamic coefficients

G14CLC - calculation of G operator

LUSOLV - solves LU decomposed system

L12CLC - calculates L1 and L 2 operators

L3CLC - calculates L3 operator

METRIC - calculates transformation metrics

N1CLC - calculates N, vector

N2CLC - calculates N 2 vector

N3CLC - calculates N 3 vector

N4CLC - calculates N4 vector

PACKER - calculates column index for banded matrices

RKD/RK4 - implements Runge-Kutta integration

TURBU - implements Baldwin-Lomax turbulence model

VISCO - calculates coefficients of Laplace operator, 4i

BWO

"* Input Files

odata - input file to specify Rc, At, etc.

ogrid - grid file; also contains field data when performing restart

"* Output Files

outo - output file for lift, drag, norms, etc.

solno - output file for field variables, also used for restarts when renamed as

'ogrid'
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avt - angle of attack vs. time

clvt - lift coefficient vs. time

clk - lift coefficient (theoretical) vs. time

hvt - vertical displacement vs. time

* Subroutines

BNDRY - implements boundary conditions

BTRIDX/Y - block tridiagonal solvers for x and y sweeps

CMATA - computes Jacobian matrix A

CMATB - computes Jacobian matrix B

CMATM - computes Jacobian matrix M

CMATN - computes Jacobian matrix N

CMXU - computes dynamic viscosity using Sutherland's formula

DAMPEX - implements fourth-order explicit damping in C direction

DAMPEY - implements fourth-order explicit damping in Y7 direction

INITIA - initialization routine, computes common parameters

LIFT/1 - computes aerodynamic coefficients

METRIC - calculates transformation metrics and Jacobian

OUTPUT - writes flow field data to output file

RHSV - computes RHS vector

SPECR - computes scaling factor for spectral damping coefficient

STEPX - performs ý sweep

STEPY - performs q sweep

TMSTEP - computes timestep (when applying local timesteping)
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TURB - implements Baldwin-Lomax turbulence model

The computer codes, and the associated drivers, restart files, and grids, are

archived on the AFIT Convex 220 in the following directories

U22 - /home/tzp/mlutton/59x25

U23 - /home/tup/alutton/59x25/TURB

U26 - /home/tap/mnutton/UMOD

BWO - /home/tup/mnutton/BWO

D.2 Algorithm Performance

A comparison of computer code performance is shown in Table x. The compu-

tations were performed on the Kubota cluster. The codes were executed using vector

optimization only. The incompressible code U26 is seen to be more efficient for course

grids. The increase in the bandwidth of the linear system results in a degredation

of efficiency for the incompressible codes as the grid size increases, and thus the

compressible code is more efficient for finer grids. A more efficient implementation

of the incompressible code has been developed by Beran [56].

Code [ Grid I No. nodes I Timesteps CPUsec CPUsec/node/iter
U26 59x25 1475 4000 872.6 1.4783 X 10-4

BWO 65x25 1625 4000 1355.2 2.0849 x 10-4

U26 99x40 3960 2000 1731.5 1.9069 x 10-4

BWO 125x50 6250 2000 2610.3 2.0882 x 10-4

U26 139x50 6950 2000 3804.2 2.4525 X 10-4

BWO 209x108 22572 2000 8608.1 1.9068 x 10-4

U26 179x60 10740 2000 6024.8 2.6582 x 10-4

Table 5. Comparison of Computer Code Performance
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